Webinar Programme

Introduction	Mike Penman (LOA)	13:00 (CET)
Read-Across in REACH; application to UVCBs	Dr. David Bell (ECHA, Helsinki)	13:10
Introduction to Metabolomics	Prof. Mark Viant (University of Birmingham, UK)	13:25
Use of Metabolomics for Read-Across	Prof. Bennard Van Ravenzwaay (BASF)	13:45
Break		14:05
Use of Metabolomics to Assess Biological Col Category Justification A. Introduction	nerence in UVCB Read-Across and Mike Penman (LOA)	14:10
B. Experimental Design and Data ReviewC. Conclusion	Prof. Hennicke Kamp (BASF) Dr. Martijn Rooseboom (Shell/LOA)	
Discussion moderator	Prof. Mark Viant (University of Birmingham, UK)	15:15
Close		16:00

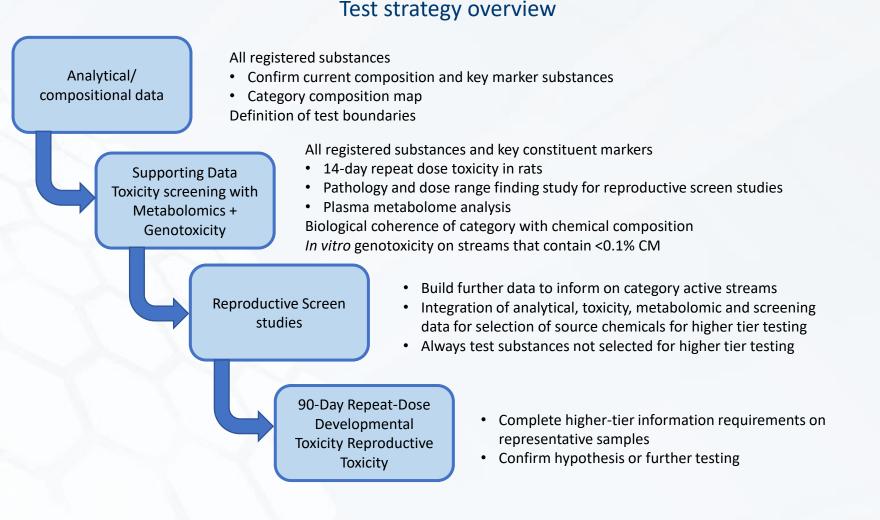
LOA REACH CONSORTIUM

Utility of Metabolomics to Support Read-Across for UVCB substances under REACH Webinar 30th November 2021

Use of Metabolomics to Assess Biological Coherence in UVCB Read-Across and Category Justification

A. Introduction

Mike Penman



LOA UVCB categories by C-number and manufacturing process

LOA	Category Name	Predominant	Category Manufacturing Process	No.
Category		C Number		Substances
A	Aliphatic / Cyclic C5 and Higher	C5 to C8	HC streams typ. from a naphtha/pyrolysis gasoline treatment and aromatic extraction unit involving pre- distillation, hydrogenation and extractive distillation processes. Produced after aromatic extraction or (fractionated) distillation of hydrotreated naphtha.	6
E	C5 non-cyclics	C4 to C8	Hydrocarbon streams typ. from the steam cracking process as products of distillation processes. This C5+ cut (typical boiling range of approximately 0 to 75 °C) predominately consist of C5 hydrocarbons. The streams contain significant levels of olefins and diolefins.	6
С	C4, Low 1,3-Butadiene (<0.1%)	C4	Typically produced from the steam-cracking of naphtha and following the extraction of 1,3-butadiene from a C4-rich stream.	5
D	C4, High 1,3-Butadiene (≥0.1%)	C4	Typically produced from the steam-cracking of naphtha as a C4-rich stream.	6
Н	High Benzene Naphthas	C5 to C11	Distillation of products from a steam cracking process or by pyrolysis. Predominantly hydrocarbons >C6 and BP range 30°C to 300°C.	26
J	Low Benzene Naphthas	C7 to C13	Distillation of products from a steam cracking process or by pyrolysis. <0.1% benzene.	4
L	Resin Oils and Cyclic Dienes	C5 to C15	Hydrocarbons typ. produced by distillation of products from a steam cracking process. Non- hydrotreated products (Resin Oils) and/or concentrates of (1) DCPD and (2) (MeDCPD).	10*
В	Butylene Oligomers	C4 to C20	Streams obtained by the oligomerisation of butylenes optionally followed by hydrotreating processes. Predominantly C8, C12, C16 and/or C20 hydrocarbons. The streams' constituents boil between 30 and 350 °C and the streams contain less than 0.1% butadiene.	8
G	Fuel Oils	C6 to C21	Hydrocarbon streams typically produced by distillation of products: from a steam cracking process, from an ethylene manufacturing process; residual fraction from these distillation processes, or produced by pyrolysis.	13
К	Other Petroleum Gases	C1 to C5	Hydrocarbon streams containing petroleum gases (alkanes/alkenes) predominantly in the C1-C5 range (with some carbon numbers present at lower levels up to C10) and include some LPGs. The majority of the members of this category contain <0.1% 1,3-butadiene.	

Test strategy overview for non-CMR categories

LOA Streams and Categories

• LOA Working Group - strove to find techniques to help support LOA UVCBs

- Aim develop biological evidence to understand UVCB relationships in categories
- Discussions with academia, CROs, industry experts
 - Biological Coherence Workshop in June 2017 with third parties
- Examined New Approach Methodologies (NAMs)
 - in silico
 - in vitro
 - In vitro functional and binding assays -broad data on Biological Molecular Initiating Events (MIEs)
 - Embryonic Stem Cell Testing
 - "Smart" in vivo
 - Screening Reproductive and Developmental Effects in Embryos of 3 Non-Mammalian Species
 - 'Classical 'RDT DRF with additional biological "readout"

Evaluation of an approach for Biological Coherence

• Considerations:

- Biological endpoint coverage and relevance
- Suitability for UVCBs
- Suitability for grouping / selection of candidates for further testing
- Animal use
- Reliability
- Cost
- Timeline
- Conclusions
 - In vitro screening approaches and DART alternatives are scientifically interesting while currently problematic for regulatory purpose
 - data often potentially insufficiently robust to base read across or test substance selection rationale to meet the REACH information requirements
 - Short term *In vivo* studies have a regulatory purpose under REACH
 - A 14-day study coupled with additional screening assay believed to be the most promising approach

Rationale for commissioning Metabolomics study

- Well developed technology with reliable partners
- Based upon in vivo 14-day rat oral studies with pathology and clinical chemistry
 - Repeat dose data information for dose range finding for screening and higher tier tests
- Ability to include major markers in the programme coherence ?
 - Link to earlier approach (2010)
- Could provide basis for an understanding of the underlying Mode of Action (MoA) and Adverse outcome pathways (AOP)
- Could support category approaches and read across
 - Will report the findings in registration dossiers
- Extensive OECD 422 data also planned on each stream to build the databases and understand relevance for RDT and reproductive effects
- Method could be used to support Biological coherence of other LOA categories
 - if alignment seen between metabolomics and OECD 422

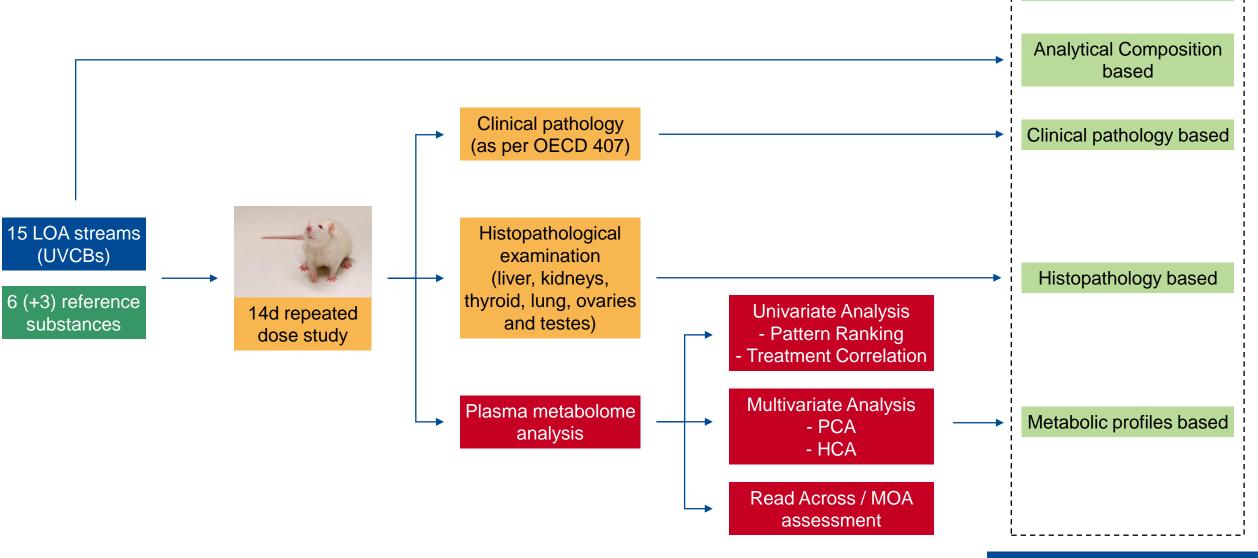
Choice and composition of Samples for a Metabolomics study

• Category - Resin Oils and Cyclic dienes

- (LOA Category L)
- Hydrocarbons typ. produced by distillation of products from a steam cracking process. Nonhydrotreated products (Resin Oils) and/or concentrates of Dicyclopentadiene (DCPD) and MeDCPD.
- Complex category defined by composition and Manufacturing process
- Detailed analysis of substances as well as biological investigation
 - Quantified "marker" substances

Webinar Programme

Introduction	Mike Penman (LOA)	13:00 (CET)
Read-Across in REACH; application to UVCBs	Dr. David Bell (ECHA, Helsinki)	13:10
Introduction to Metabolomics	Prof. Mark Viant (University of Birmingham, UK)	13:25
Use of Metabolomics for Read-Across	Prof. Bennard Van Ravenzwaay (BASF)	13:45
Break		14:05
Use of Metabolomics to Assess Biological Col Category Justification A. Introduction	herence in UVCB Read-Across and Mike Penman (LOA)	14:10
B. Experimental Design and Data Review	Prof. Hennicke Kamp (BASF)	
C. Conclusion Discussion moderator	Dr. Martijn Rooseboom (Shell/LOA) Prof. Mark Viant (University of Birmingham, UK)	15:15
Close		16:00


LOA REACH CONSORTIUM

Utility of Metabolomics to Support Read-Across for UVCB substances under REACH Webinar 30th November 2021

Use of Metabolomics to Assess Biological Coherence in UVCB Read-Across and Category Justification B. Experimental Design and Data Review Prof. Hennicke Kamp (BASF)

Overview

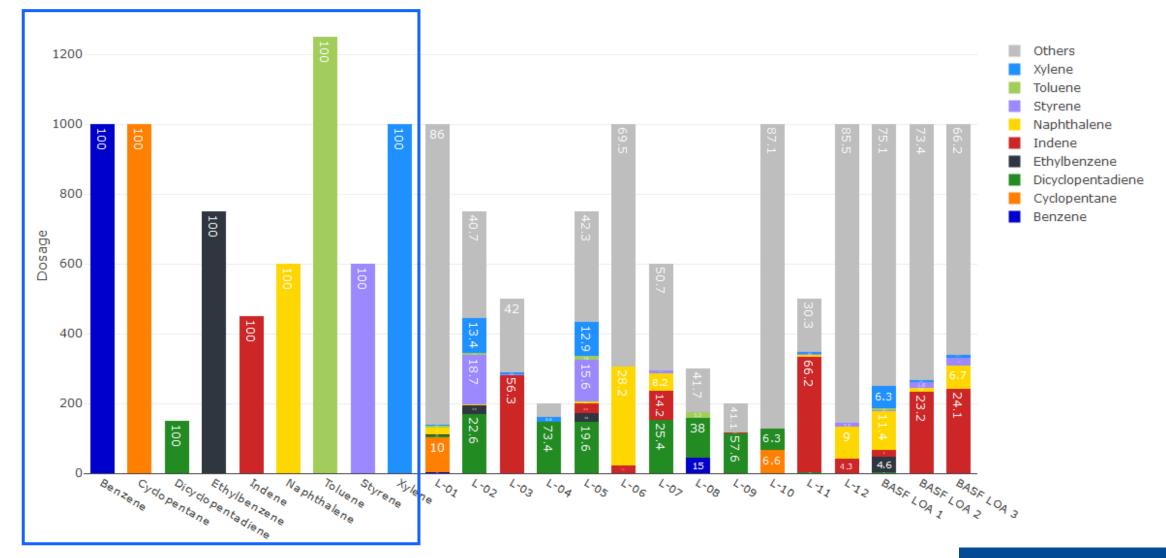
Stream Clustering

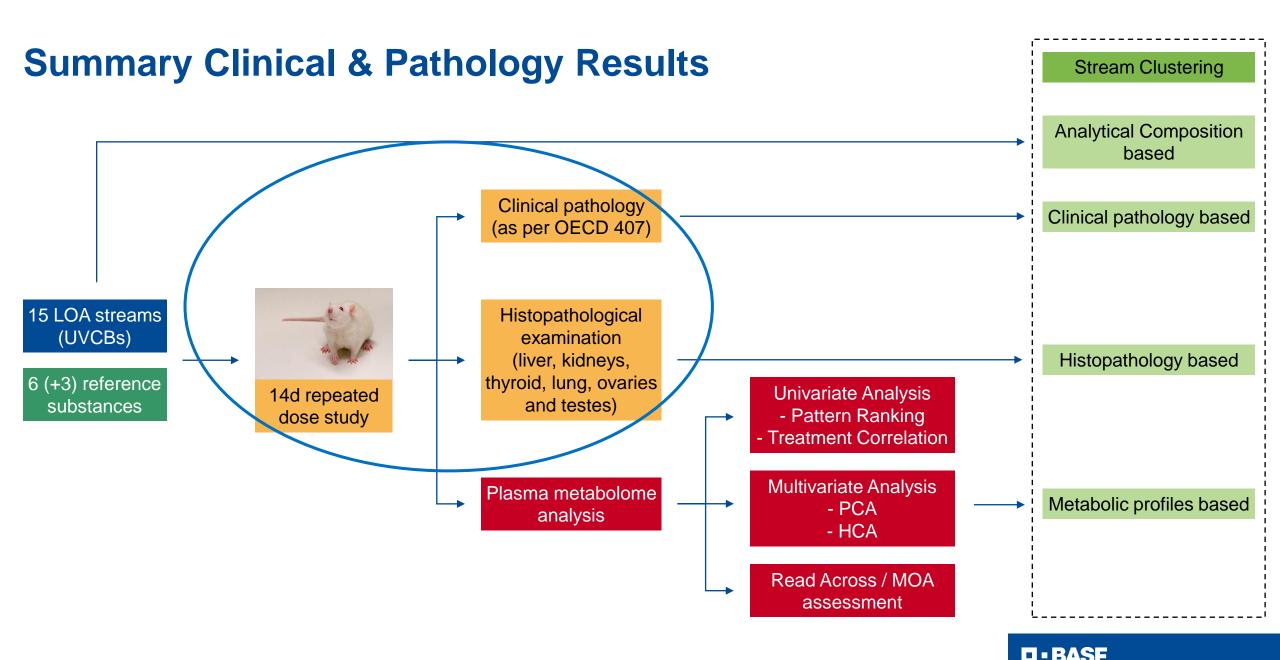
LOA: 14-day Metabolome Study - Design

Rats Crl:Wi(Han)

- Both sexes, 5 animals per dose group
 - Low Dose (LD) and High Dose (HD) groups
- Control group 10 animals per group
- 14 day treatment (oral, gavage in corn oil)
- Plasma metabolome analysis (1 timepoint), including catecholamines and steroids
- Clinical pathology (haematology and blood chemistry in accordance with OECD 407)
- Histopathological examination of liver, kidneys, thyroid, lung, ovaries and testes
- Tissue storage for the purpose of further analysis (not limited to histopathology purposes)

§-Good Laboratory Practice-§




LOA: 14-day Metabolome Study - Design

	Stream	Low dose (mg/kg bw)	High dose (mg/kg bw)	Marker	Low dose (mg/kg bw)	High dose (mg/kg bw)
	L-01	300	1000	Benzene	300	1000
	L-02	250	750	Xylene	300	1000
	L-03	150	500	Naphthalene	250	600
Dose levels	L-04	70	200	DCPD*	50	150
\rightarrow Based on 7 day study	L-05	250	750	Cyclohexane	300	1000
	L-06	300	1000	Indene	100	450
\rightarrow Clinical data	L-07	200	600	Ethylbenzene**	250	750
\rightarrow Food	L-08	100	300	Toluene**	600	1250
consumption	L-09	70	200	Styrene**	200	600
\rightarrow Body weight	L-10	300	1000			
	L-11	150	500	* Dicyclopentadiene		
	L-12	300	1000	** 28-day studies		
	BASF LOA 1	300	1000			
	BASF LOA 2	300	1000			
	BASF LOA 3	300	1000	D = BASF We create chemistry		

Dosage (HD) and % of Marker Substances in Stream composition

We create chemistry

14-day Results: Food Consumption, Body Weight & Clinical Data

- Food Consumption
 - Initial strong reduction in low and high dose groups
- Body weight
 - Reduction: High Dose up to 16%; Low dose, up to 6%
- Clinical Observations
 - Semi-closed eyelid, piloerection and apathy observed in almost all high dose groups
 - Dose response observed
 - Not seen (or lesser effect) in L-01, benzene, xylene, cyclopentane groups
- Observations were as expected from test study (except naphthalene)
 - → Data give sound basis for dose setting for OECD 422 studies currently being conducted

14-day Results: Clinical Chemistry in High Dose Groups

	High dose
Stream	(mg/kg bw)
L-01	1000
L-02	750
L-03	500
L-04	200
L-05	750
L-06	1000
L-07	600
L-08	300
L-09	200
L-10	1000
L-11	500
L-12	1000
BASF LOA 1	1000
BASF LOA 2	1000

1000

	LOA 1		
	BASF LOA 2		
	BASF LOA 3		
D • BASF			

We create chemistry

Organ	Effect	Strear	Markers		
Organ	Ellect	Males	Females	IVIAI KEI S	
Red Blood	Increased RBC metabolism RetA ↑	L-1,-2,-3,-5,-6,-7,-10,-12	L-1,-2,-5,-6,-7,-8	Napthalene	
Cells	Regenerative anaemia	L-11, BASF LOA-2	L-3,-11,-12 BASF LOA-1, -2, -3	Indene	
White Blood Cells	lymphopenia	-	-	Benzene	
Liver	Liver cell dysfunction HQT	L-8,-9	L-4,-8,-9	Indene, xylene Dicyclopentadiene, Napthalene	
Liver	Liver cell membrane degredation ALT ↑	L-1,-2,-3,-5,-6,-7 BASF LOA-1,-2,-3	L-1,-2,-3,-5,-6,-7 BASF LOA-1,-2,-3	Naphthalene	
No	adverse effect	L-4	L-10	Cyclopentane	
	RetA: absolute reticulocyte counts HQT: prothrombin time (Hepatoquick's test)				

ALT: alanine aminotransferase

14-day Results: Organ Weight Data

Liver

High Dose - generally increased (relative and absolute) – except benzene, cyclopentane

Low dose partially

Thyroid

Increased for some Streams and Markers (relative and absolute)

Kidney

Increased in males (relative and partly absolute)

Spleen, heart, adrenals, ovaries, testes, seminal vesicle, epididymides, prostate

Occasional weight changes

at least partially related to body weight changes

14-day Results: Histopathology – 1

Overview: dose-response seen for most of the effects observed

Liver

- Hepatocellular hypertrophy (centrilobular, periportal, diffuse)
 - main histological finding except for
 - → Benzene, DCPD, Cyclopentane, Indene, BASF LOA streams in males
 - \rightarrow L-09, Benzene, Cyclopentane, Indene in females
- Occasionally Kupffer cell hypertrophy/ hyperplasia, single cell necrosis
 - mostly in single animals
 - L-09 (HD) in males; Naphthalene (HD), DCPD (HD) in females
 - only benzene showed single cell necrosis in three female animals of the high dose and 5 female animals of the low dose
- Thyroid
 - Follicular hypertrophy/ hyperplasia
 - all LOA-streams in males and most LOA-streams in female
 - all BASF-LOA streams, some marker compounds in female animals

14-day Results: Histopathology – 2

Overview: dose-response seen for most observed effects

Kidney

Eosinophilic droplets in males except for Naphthalene, Indene (confirmed: alpha 2u globulin)

Occasionally tubular degeneration/ regeneration in females: Naphthalene, L-03 (single animals)

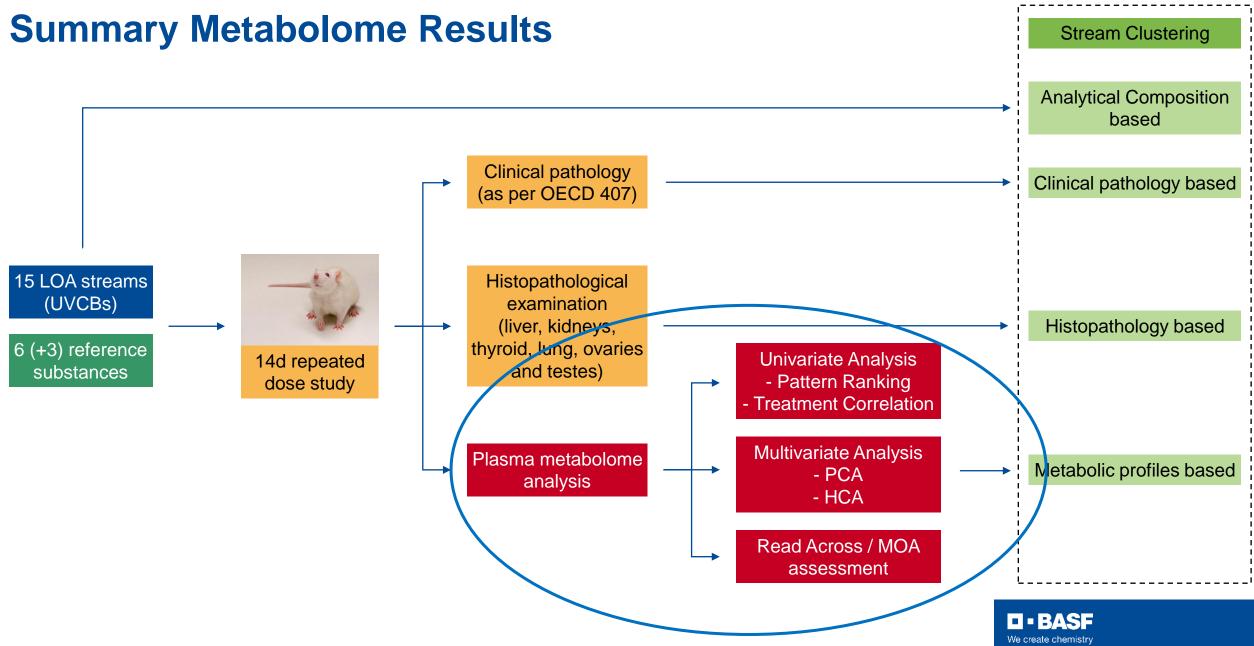
Lung

Bronchiolar hypertrophy/ hyperplasia, alveolar histiocytosis, thickened septae (unclear origin)

• high dose males: → L-03, L-04, L-07, L-10, L-11

 \rightarrow finding occasionally seen also in control animals

 \rightarrow only minimal to slight changes

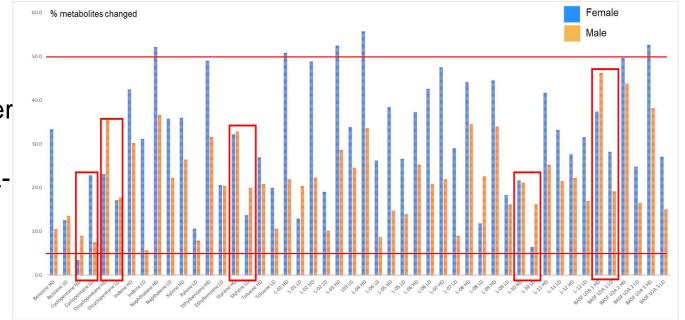

 \rightarrow considered not adverse (indicative for local irritation, potentially adaptive clearance processes)

Ovaries and Testes

No histological changes except for slight reduction in size in two animals diagnosed at necropsy for L-12

14-day Results – Summary classical parameters

- Clinical symptoms, food consumptions and body weight effects observed were as expected from test study (except naphthalene)
- Clinical pathology
 - Effects on liver and the red blood cell system
- Organ weight
 - Effects mainly on liver, thyroid (both sexes) and kidney (males).
 - Histopathology
 - Liver and thyroid effects (indicative for enzyme induction) in both sexes
 - Kidney effects in males (confirmed alpha 2u globulin)

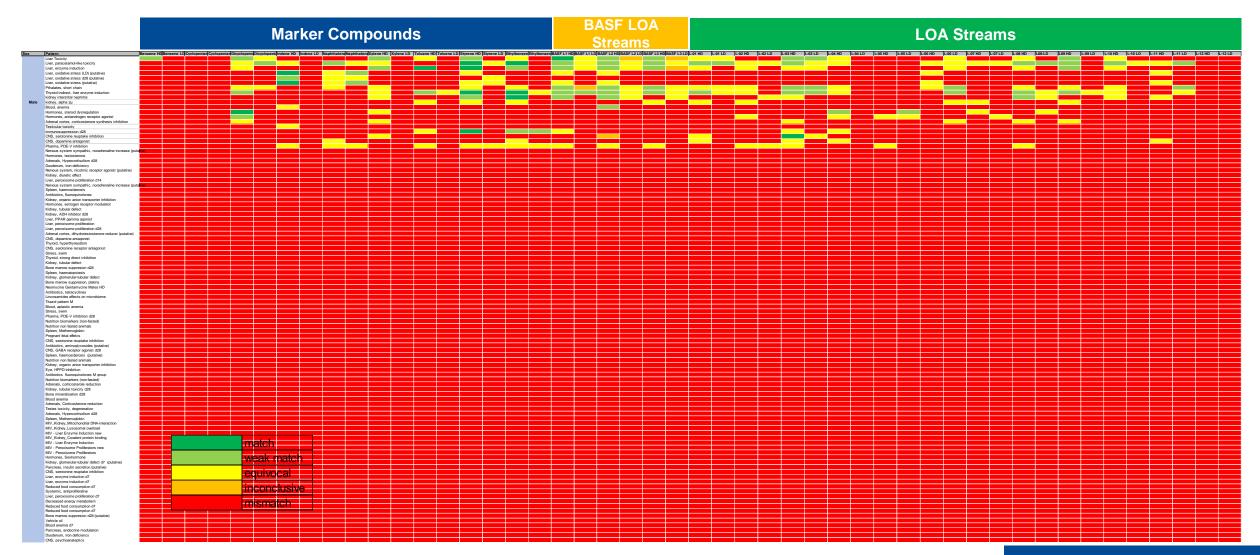

14-day Metabolome Study – the Metabolome Data

Overview

- Significant effects on metabolome
 - Dose response for all treatments
 - Effects in females stronger than in males
- Pattern matches indicated primarily liver as target organ
- Treatment correlation shows three clusters of higher similarity
- Multivariate analysis show separating trend for three clusters

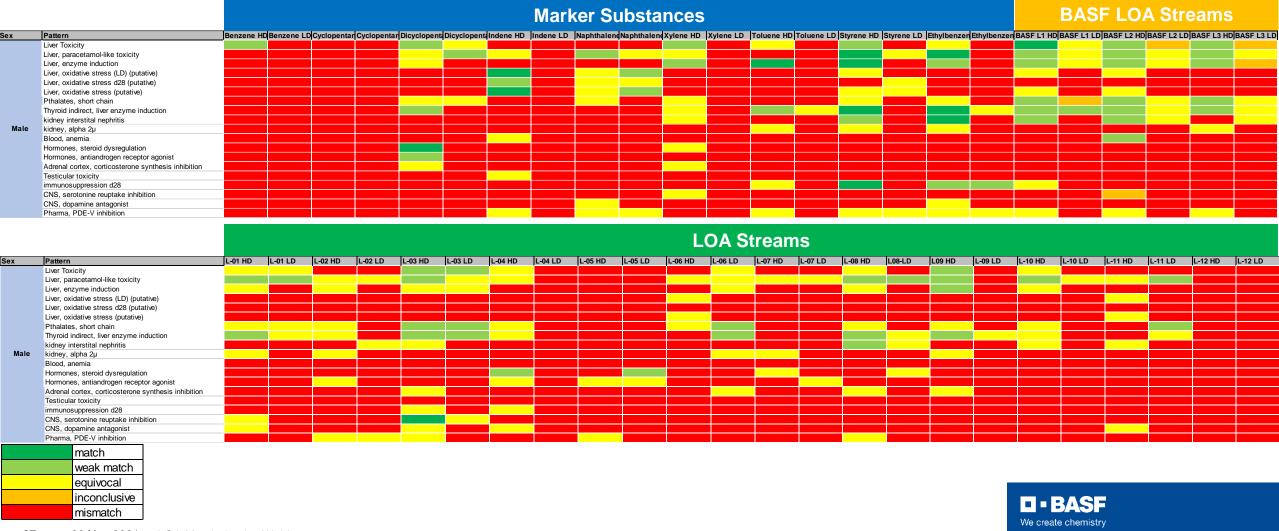
Metabolite Changes → Strength of Effects

- Generally dose-dependency observed
 (exc. Benzene (m), Cyclopentane (f))
- Response in female animals generally higher compared to males
 - (exc. Cyclopentane, Dicyclopentadiene, L-10, BASF LOA 1)
- Generally very high response, especially for female animals
 - (> 50% for Naphthalene, L-01, L-03, L-04, BASF LOA 2 + 3


Pattern Ranking: Example LOA Stream L-01, HD

Rank no.	Pattern Name	Gender	Median r	Assessment
1	Liver, cholestasis (putative)	Female	0.91077475	95%
2	Liver Toxicity	Female	0.90536355	100%
3	Liver, enzyme induction	Female	0.89080331	96%
4	Liver, paracetamol-like toxicity	Female	0.88672816	86%
5	Liver, enzyme induction d14	Female	0.85687712	96%
6	Thyroid indirect, liver enzyme induction	Female	0.83587564	92%
7	Thyroid indirect, liver enzyme induction	Male	0.83406248	81%
8	Blood platelet aggregation inhibition	Female	0.8331395	78%
9	Liver, paracetamol-like toxicity	Male	0.82475422	88%
10	Bone marrow suppresion d28 (putative)	Female	0.82273891	73%
11	Kidney, interstitial nephritis	Male	0.80433547	61%
12	Liver, enzyme induction	Male	0.78154309	72%
13	Anemia, iron defeciency	Female	0.74486341	64%
14	Liver, peroxisome proliferation d28	Female	0.72757798	67%
15	CNS, serotonine reuptake inhibition	Male	0.72532916	80%

match
weak match
equivocal
inconclusive
mismatch


BASF We create chemistry

Pattern Ranking – Males (Overview)

Pattern Ranking – Males (Patterns with Matches)

Pattern Ranking – Males (Conclusions)

Liver:

Primary Target Organ: mostly enzyme induction, liver toxicity

Thyroid:

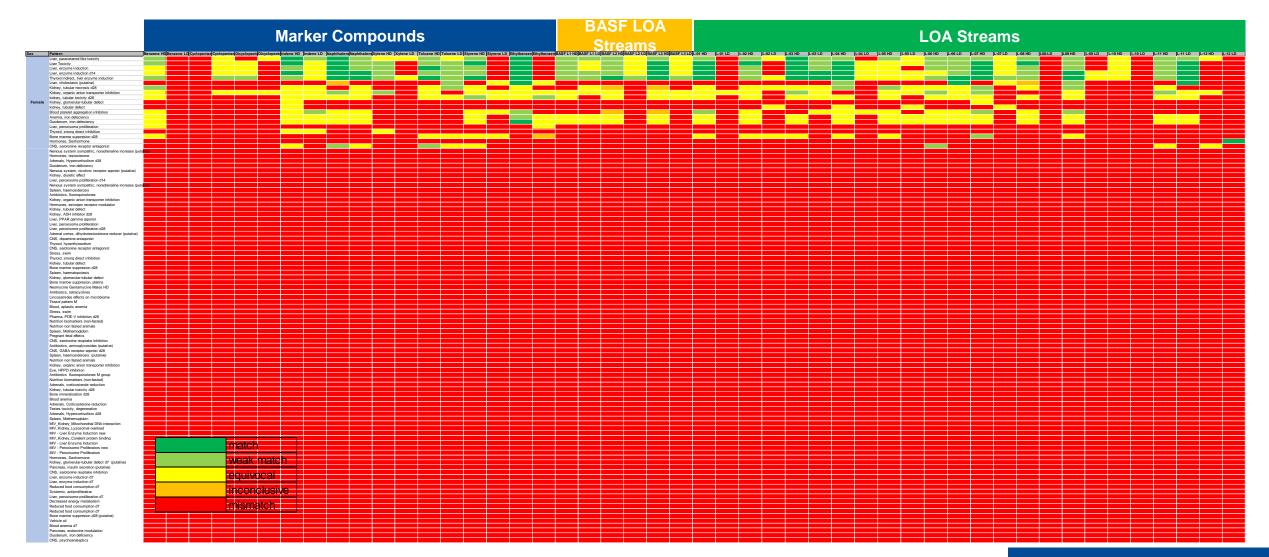
secondary to liver enzyme induction

Kidney:

▶ Styrene (HD), Ethylbenzene (HD), BASF LOA 1 – 3 (HD + LD for BASF LOA 1), L-08 (HD)

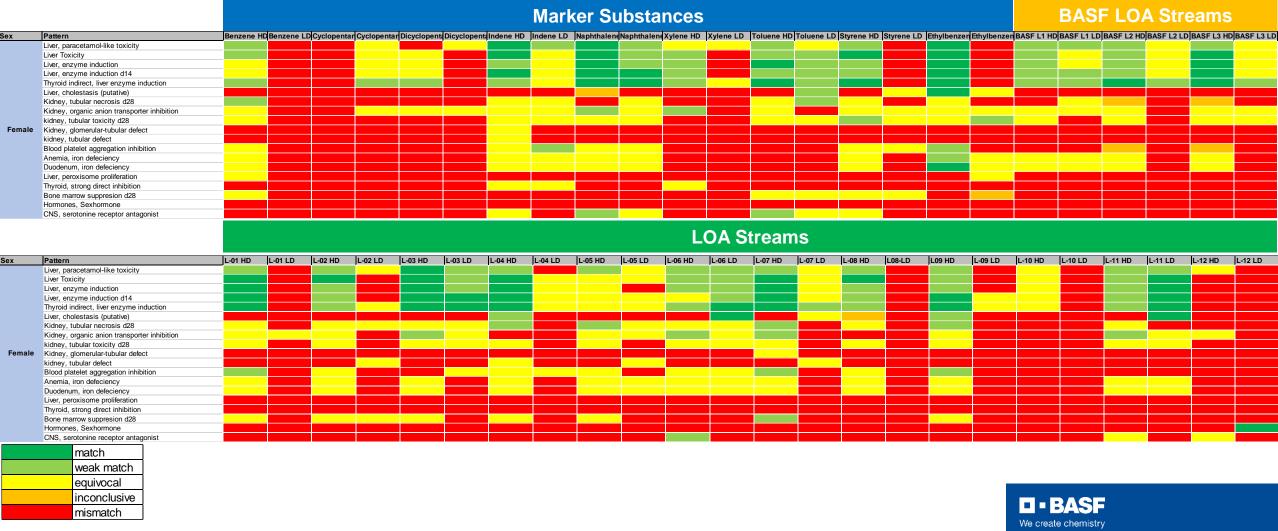
Hormonal effects: considered not relevant

 \blacktriangleright Dicyclopentadiene (HD) \rightarrow incidental: no correlate with classical parameters (e.g., organ weight)


▶ L-04 (HD) \rightarrow incidental: no correlation with classical parameters

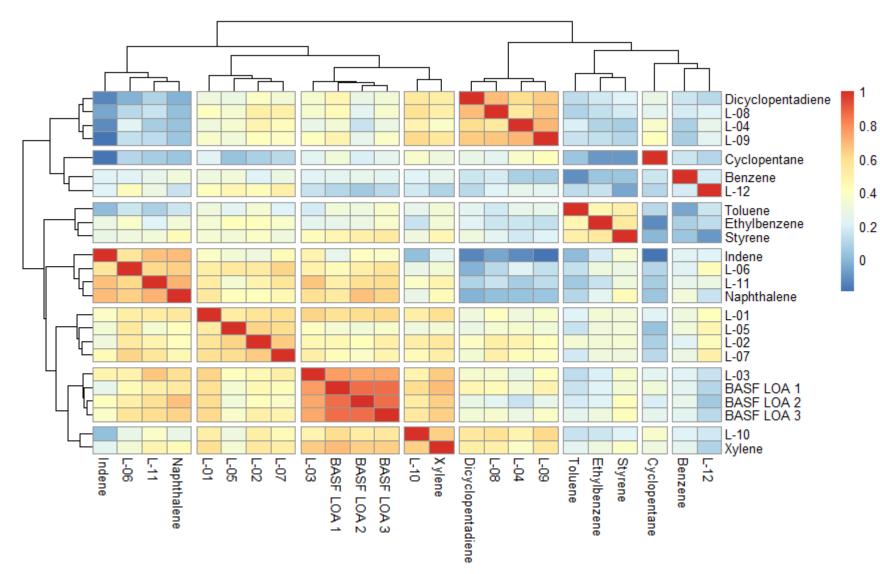
▶ L-05 (LD) \rightarrow incidental: no correlation with classical parameters, no dose-response

CNS (Serotonin reuptake inhibition): considered not relevant


L-03 (HD) \rightarrow incidental: no correlation with classical parameters, isolated finding

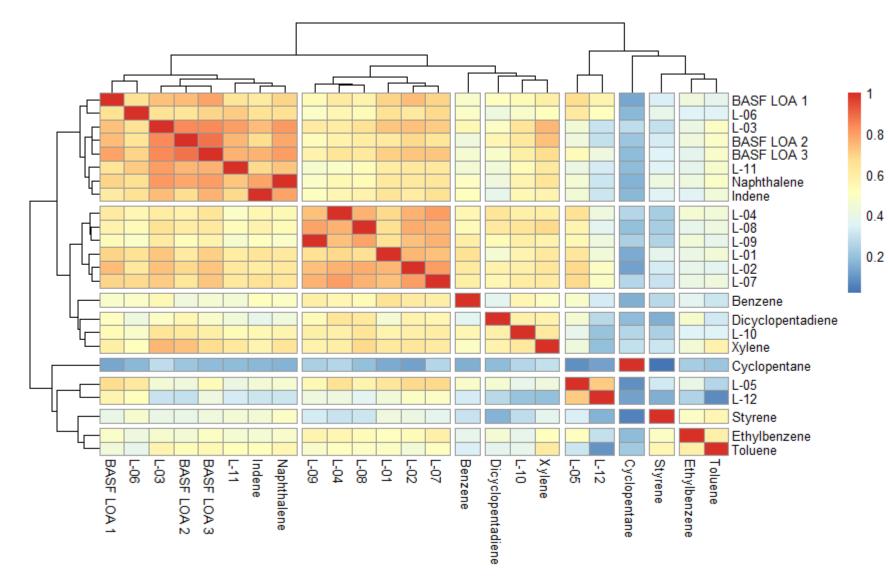
Pattern Ranking – Females (Overview)

Pattern Ranking – Females (Patterns with Matches)


Pattern Ranking – Females (Conclusions)

Liver

- Primary Target Organ: mostly enzyme induction
- Thyroid
 - Secondary to liver enzyme induction
- Kidney
 - Benzene (HD), Ethylbenzene (HD), Naphthalene (HD), Styrene (HD), Toluene (LD), Xylene (HD), L-03 (HD) – L-07 (HD), L-09 (HD) and L-11
- Blood cell disorders
 - Indene (LD), Ethylbenzene (HD), L-01 (HD), L-07 (HD), L-09 (HD)
- CNS (serotonin receptor antagonist):
 - ▶ Naphthalene (HD), Toluene (HD), L-06 (HD) \rightarrow potentially false-positive due to liver effects
- Hormonal effects:
 - ▶ only L-12 (LD) \rightarrow no dose response probably false-positive

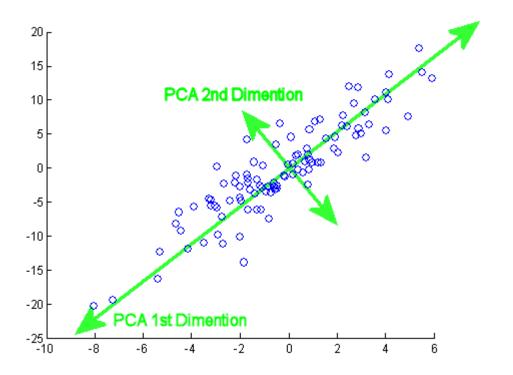

Treatment Correlation – Clustering, Males

- Clustering based on correlation coefficients from treatment correlation
- Clear sub-clusters:
 - DCPD, L-04, L-08, L-09
 - Toluene, Ethylbenzene, Styrene
 - Naphthalene, Indene, L-06, L-11
 - BASF LOA streams, L-03

BASF
We create chemistry

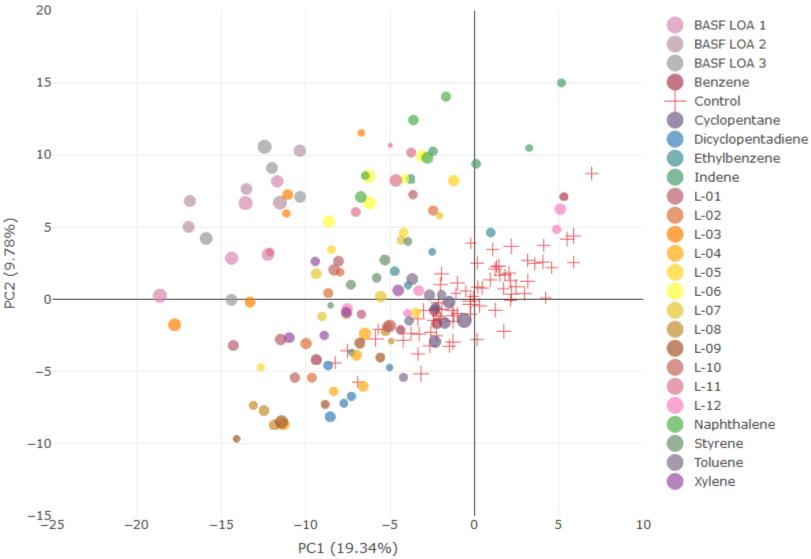
Treatment Correlation – Clustering, Females

- Clustering based on correlation coefficients from treatment correlation
- Clear sub-clusters:
 - L-01, L-02, L-04, L-07, L-08, L-09
 - Naphthalene, Indene, BASF LOA streams, L-03, L-06, L-11



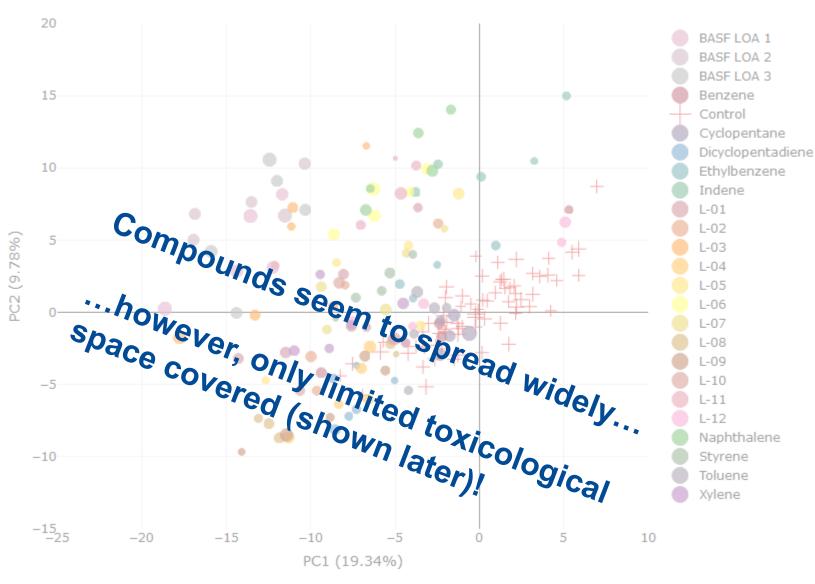
Principal Component Analysis - Methodology

Reduces dimensionality


 \rightarrow Allows visualization of a high-dimensional data in few (2/3) dimensions

- Linear transformation of the original variables
 Jump by making a rotation of the multidimensional space
- Retain as much variation as possible
 in a way to focus on the direction of maximum variation
- Principal components (PC's) are uncorrelated and ordered
 First PC has the most information; then second.
- Identify differences: samples can be grouped based on similarity of differences.

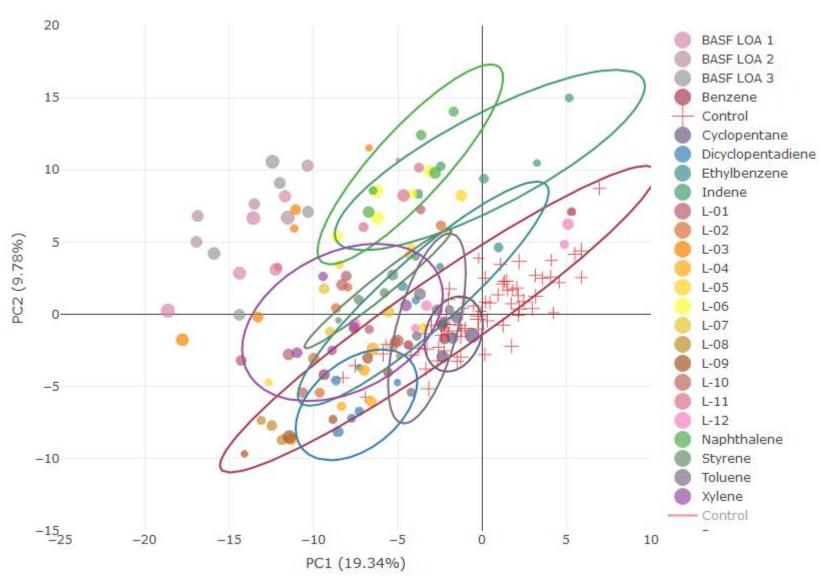
PCA – Males (Controls and HD of All Treatments)


- (Biological) variability induces spread of data points
- Treatment-related effect visible for many streams/ marker compounds
- Some treatment overlap with controls
 → e.g., cyclopentane
- Some treatments are distinguishable from each other
 - → e.g., BASF LOA streams vs Naphthalene/ L-06 vs. DCPD/ L-09

D BASE

Ne create chemistry

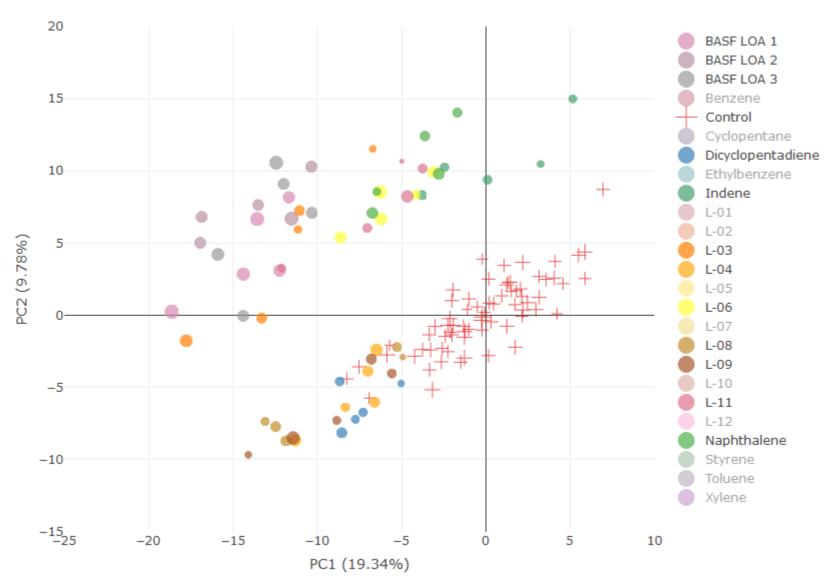
PCA – Males (Controls and HD of All Treatments)



- (Biological) variability induces spread of data points
- Treatment-related effect visible for many streams/ marker compounds
- Some treatment overlap with controls
 → e.g., cyclopentane
- Some treatments are distinguishable from each other

→ e.g., BASF LOA streams vs Naphthalene/ L-06 vs. DCPD/ L-09

PCA – Males (Controls and HD of All Treatments)



Marker compounds highlighted

- Naphthalene, Indene, Styrene, Xylene, DCPD with clear effect
- Benzene, Toluene,
 Ethylbenzene close to control (partly overlapping)
- Cyclopentane w/o any effect
- Marker compounds separate into different directions

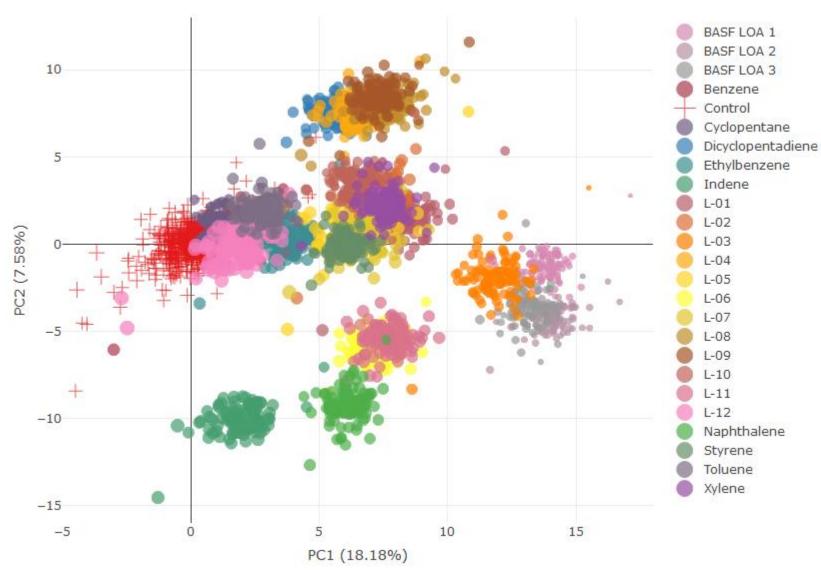
PCA – Males (Controls and HD of All Treatments)

- Compounds with highest separation highlighted
- Tendency for sub-clusters:
 - DCPD, L-04, L-08, L-09
 - Naphthalene, Indene, L-06, L-11
 - BASF LOA streams, L-03
- The latter two sub-clusters closer together

Bootstrapping

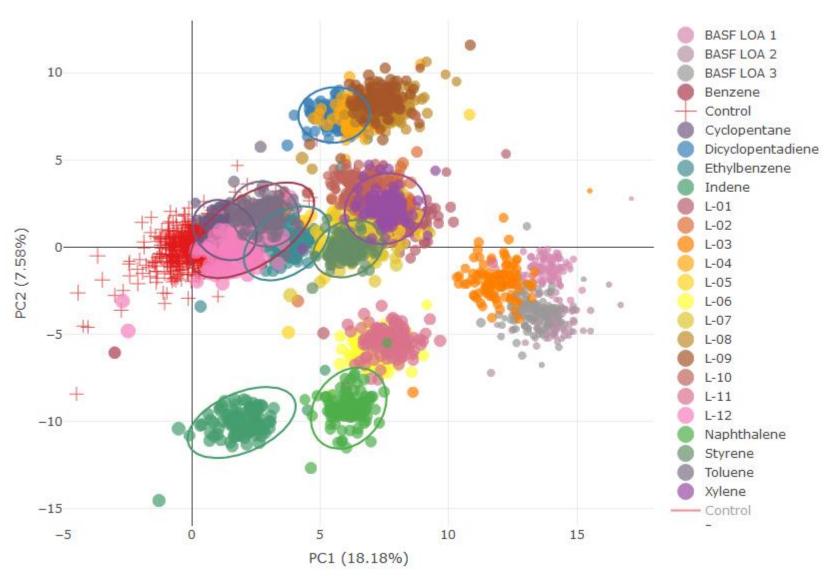
5 measured samples per group

	Study Day	Treatment	Meta 1	Meta 2	Meta 3	Meta 4	Meta 5
m	14	T1	A ₁	A ₂	A ₃	A ₄	A_5
m	14	T1	B ₁	B ₂	B ₃	B ₄	B ₅
m	14	T1	C ₁	C ₂	C ₃	C ₄	C ₅
m	14	T1	D ₁	D_2	D_3	D_4	D_5
m	14	T1	E ₁	E ₂	E_3	E ₄	E_5

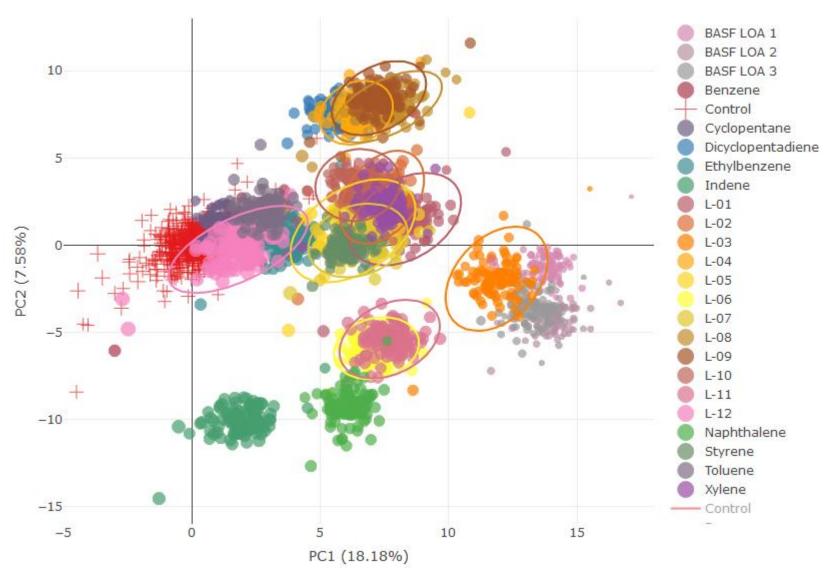

Sex	Study Day	Treatment	Meta 1	Meta 2	Meta 3	Meta 4	Meta 5
m	14	T1	B ₁	E ₂	E ₃	B_4	B_5
m	14	T1	A ₁	C ₂	B_3	B_4	E ₅
m	14	T1	B ₁	E ₂	E_3	D_4	C ₅
m	14	T1	E ₁	A ₂	E ₃	E_4	E ₅
m	14	T1	C ₁	B ₂	B ₃	E_4	E ₅
m	14	T1	D ₁	E ₂	C ₃	A ₄	C ₅
m	14	T1	D ₁	C ₂	A ₃	A ₄	C ₅
m	14	T1	C ₁	A ₂	D_3	A ₄	E ₅
m	14	T1	E ₁	B ₂	B ₃	D_4	B ₅
m	14	T1	E ₁	C ₂	D_3	D_4	D_5
m	14	T1	A ₁	C ₂	D_3	C ₄	B_5

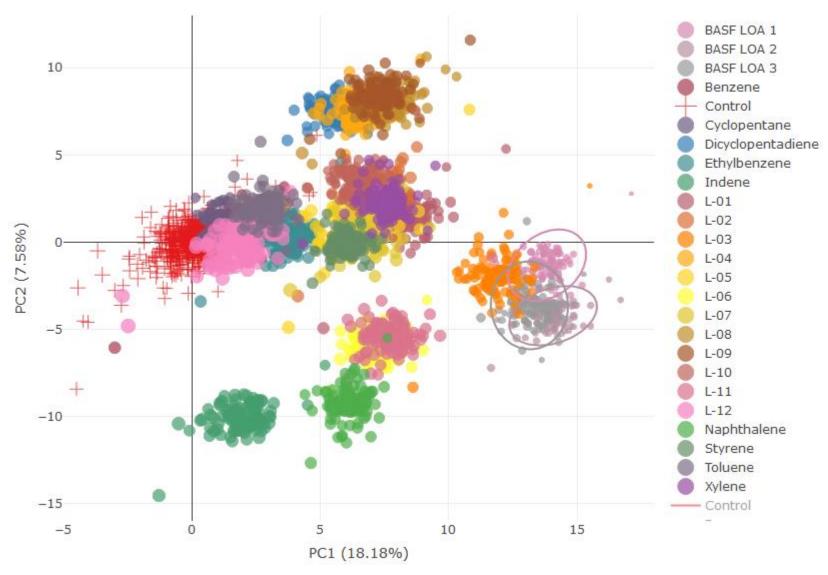
Random sampling with replacement

- performed independently for each measured metabolite
- within the treatment group (Compound, Dose, Sex, Study day).
- The method provides a way to increase sample numbers.
- Breaks any correlations within treatment group while preserving across groups.
 - Counters the variation within group and allows comparison across groups.

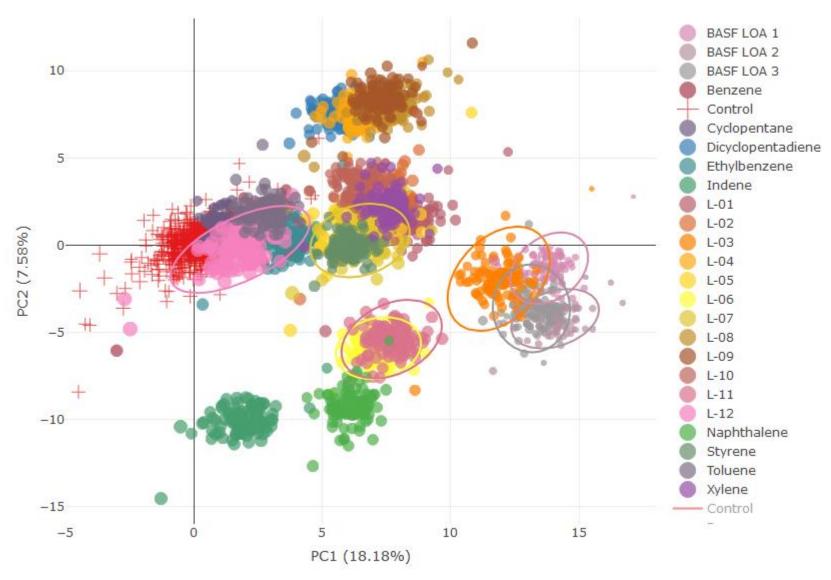

n pseudo samples per group

All compounds: PCA after bootstrapping (100x) + original values


- Clearer tendency for three sub-clusters:
 - DCPD, L-04, L-08, L-09
 - Naphthalene, Indene, L-06, L-11
 - ▶ BASF LOA streams, L-03
- Better separation between the latter two sub-clusters
- Potentially fourth sub-cluster in the center of all data points


All compounds: PCA after bootstrapping (100x) + original values

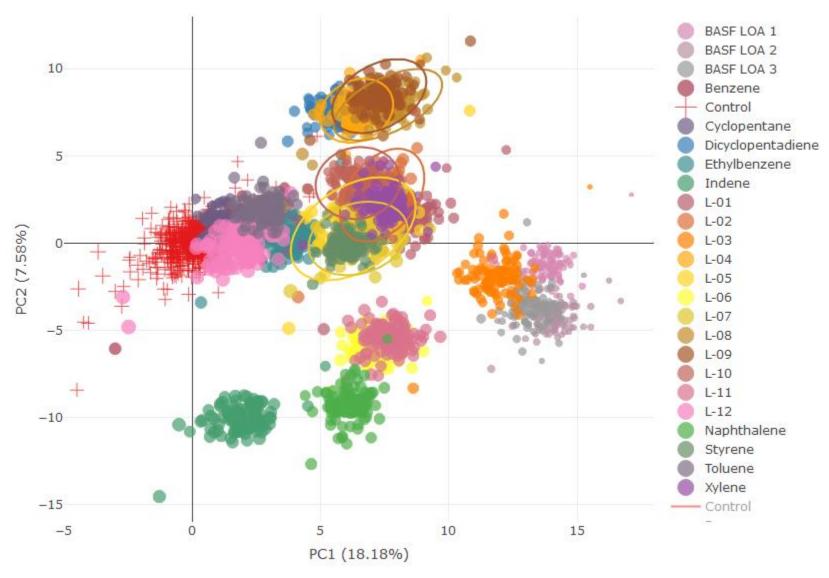
Marker compounds highlighted


All compounds: PCA after bootstrapping (100x) + original values

LOA streams highlighted

All compounds: PCA after bootstrapping (100x) + original values

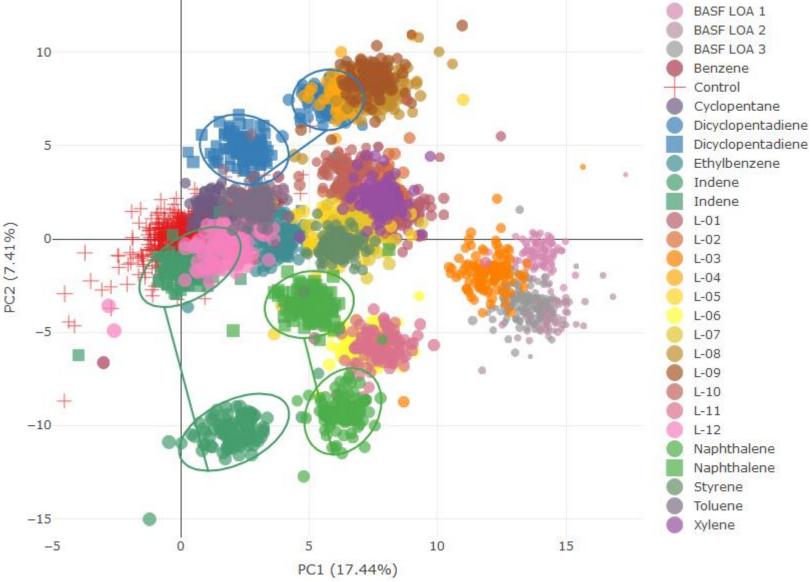
BASF LOA streams highlighted


All compounds: PCA after bootstrapping (100x) + original values

Naphthalene-/ Indene-rich streams highlighted

BASE

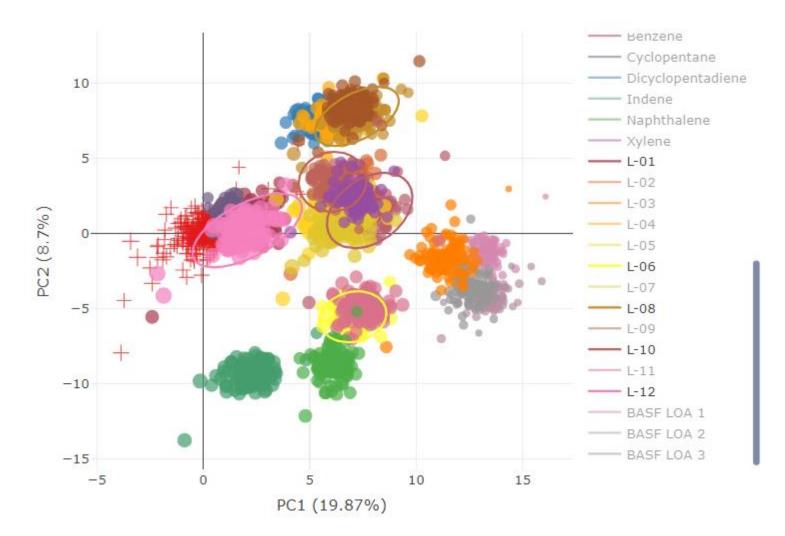
We create chemistry


4 30 Nov 2021 LOA Metabolomics Webinar

All compounds: PCA after bootstrapping (100x) + original values

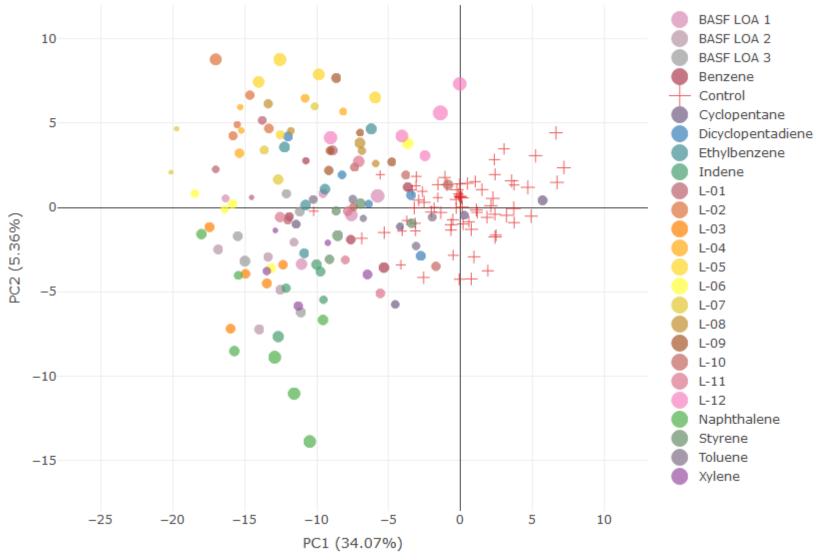
DCPD-rich streams highlighted

PCA – Males (Bootstrapped – LD Naphthalene, Indene, DCPD)



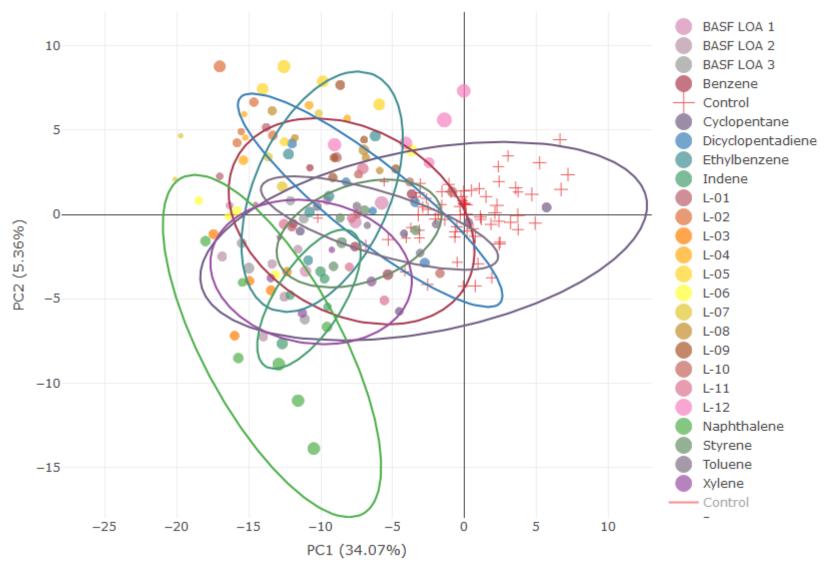
All compounds: PCA after bootstrapping (100x) + original values

 Additional display of low dose animals for Naphthalene, Indene, DCPD (squares)


46 30 Nov 2021 LOA Metabolomics Webinar

- All compounds: PCA after bootstrapping (100x) + original values
- Streams outside Cat L boundary

PCA – Females (Controls and HD of All Treatments)

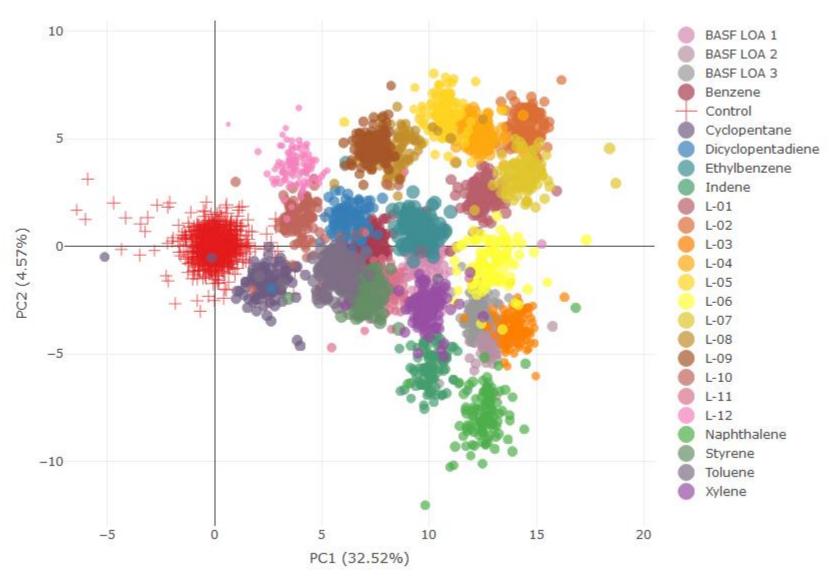

30 Nov 2021

LOA Metabolomics Webinar

- Biological variability induces spread of data points
- Treatment-related effect visible for many streams/ marker compounds
- Some treatment overlap with controls
 → e.g., cyclopentane
- Some treatments are distinguishable from each other
 - \rightarrow e.g., Naphthalene/ Indene vs. L-05, L-06, L-08, L-09
- Separation less clear as for males

D BASE

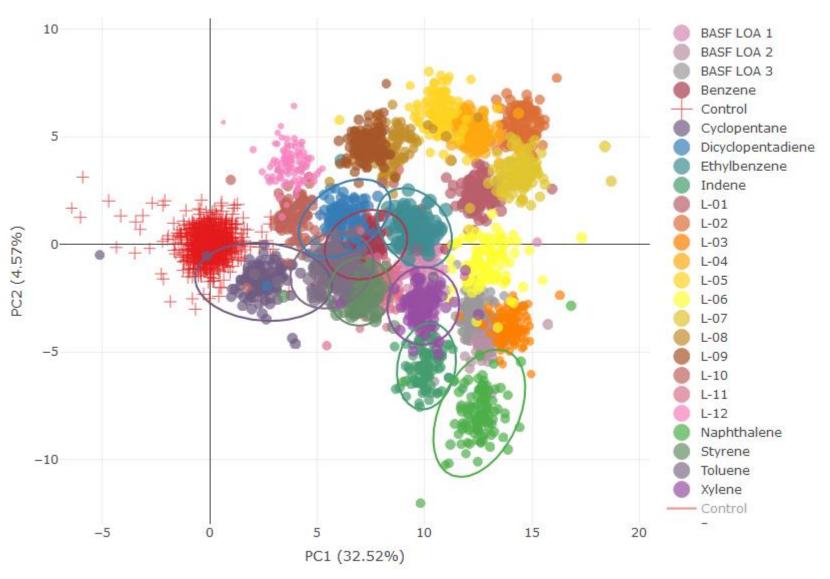
PCA – Females (Controls and HD of All Treatments)


Marker compounds highlighted

- Naphthalene, Indene, Xylene, Ethylbenzene with clear effect
- Benzene, Styrene, Toluene, DCPD, Cyclopentane close to control (partly overlapping)

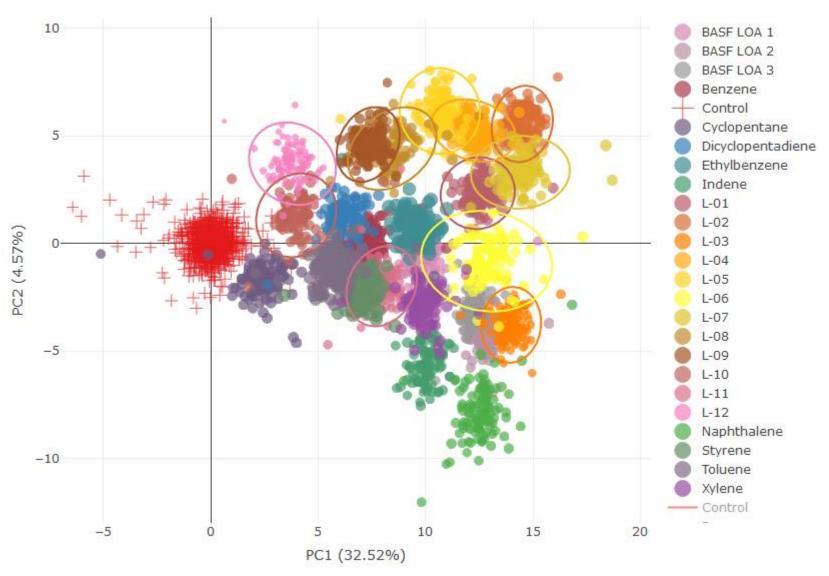
🗆 - BASE

We create chemistry


 Marker compounds overlaying

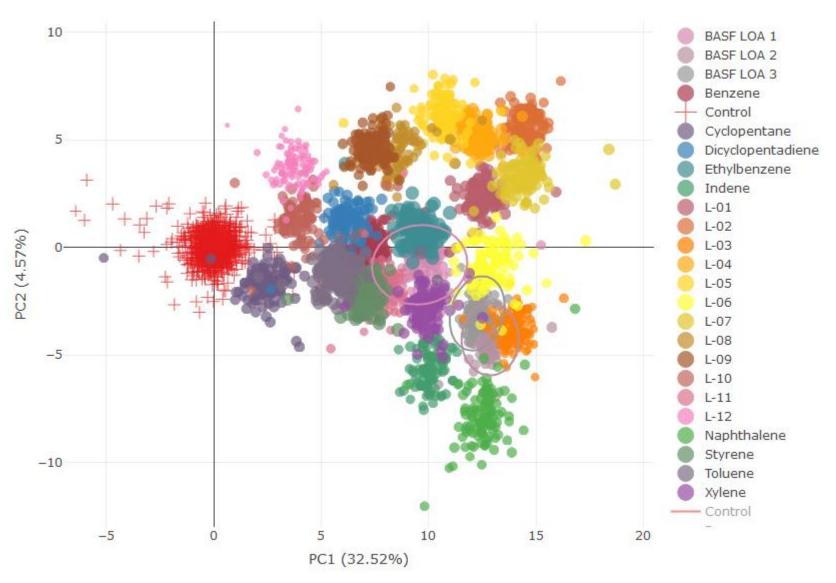
All compounds: PCA after bootstrapping (100x) + original values

- Tendency for one or two subclusters:
 - L-01, L02, L-04, L-05, L-07, L-08, L-09
 - Naphthalene, Indene, Xylene, BASF LOA streams, L-03, L-11, L-06
- Lesser separation as compared to males confirmed


All compounds: PCA after bootstrapping (100x) + original values

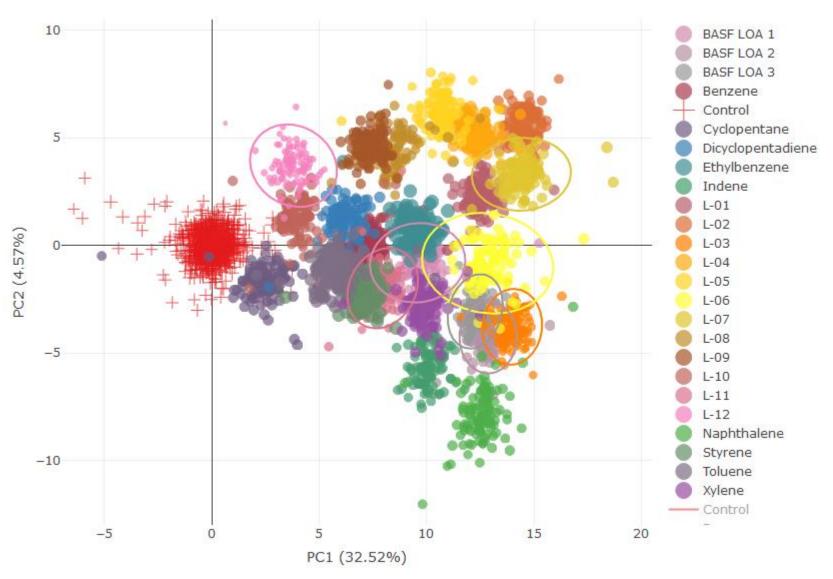
BASE

We create chemistry


Marker compounds highlighted

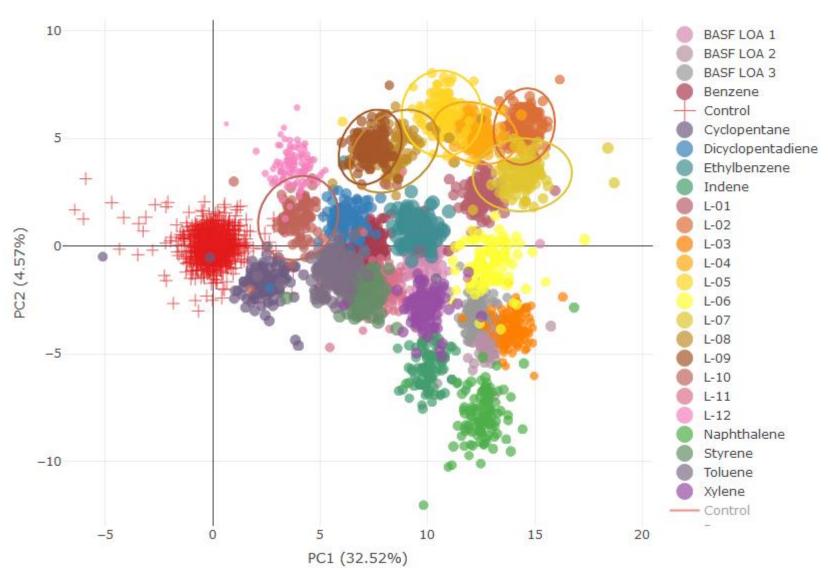
51 30 Nov 2021 LOA Metabolomics Webinar

All compounds: PCA after bootstrapping (100x) + original values


LOA streams highlighted

All compounds: PCA after bootstrapping (100x) + original values

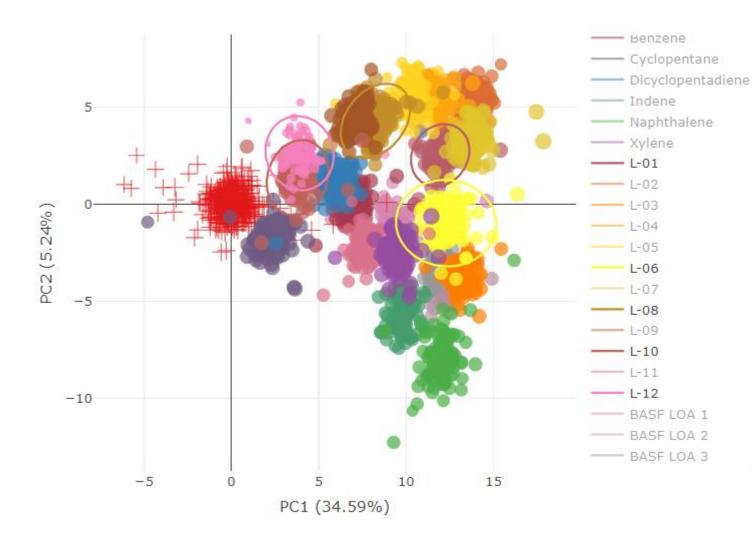
BASF LOA streams highlighted


All compounds: PCA after bootstrapping (100x) + original values

Naphthalene-/ Indene-rich streams highlighted

D - BASE

We create chemistry

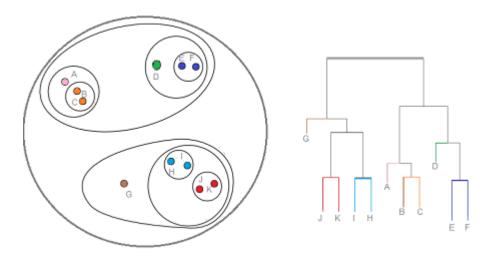

54 30 Nov 2021 LOA Metabolomics Webinar

All compounds: PCA after bootstrapping (100x) + original values

DCPD-rich streams highlighted

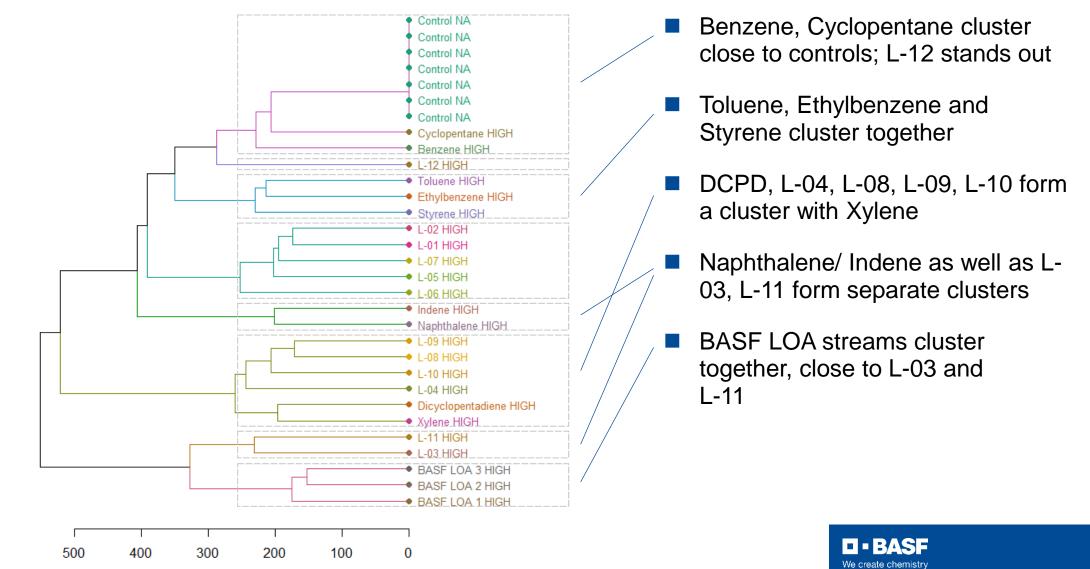
- All compounds: PCA after bootstrapping (100x) + original values
- Streams outside Cat L boundary

Hierarchical Clustering Analysis

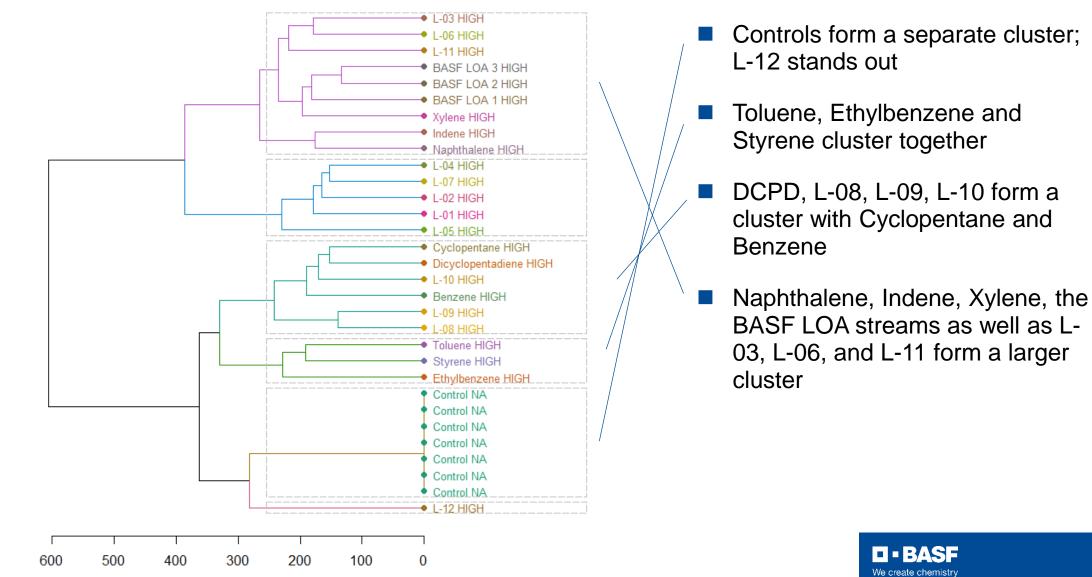

Clusters data

 \rightarrow Groups similar samples into clusters

The clusters are based on the distance/similarity of samples


 \rightarrow based on distances in the large multi-dimensional space

Finds similar objects: the clusters indicate objects that belong together



Hierarchical Clustering - Males

Hierarchical Clustering - Females

Comparison of Clusters

	Males				Females		
	PCA	HCA	TC		PCA	HCA	TC
Indene				Indene			
Naphthalene				Naphthalene			
L-06				Xylene			
L-11				L-03			
L-03				L-06			
BASF LOA 1				L-11			
BASF LOA 2				BASF LOA 1			
BASF LOA 3				BASF LOA 2			
DCPD				BASF LOA 3			
Xylene				Benzene			
L-04				Cyclopentane			
L-08				DCPD			
L-09				L-01			
L-10				L-02			
Benzene				L-04			
Cyclopentane				L-05			
Ethylbenzene				L-07			
Styrene				L-08			
Toluene				L-09			
L-01				L-10			
L-02				Ethylbenzene			
L-05				Styrene			
L-07				Toluene			
L-12				L-12			

- Colour indicates the different clusters
 - Three clusters in male animals:
 1. Naphthalene-/ Indene-rich (blue)
 - 2. BASF-LOA + L-03 (green)
 - 3. DCPD-rich (yellow)
 - Two clusters in female animals:
 1. Naphthalene-/ Indene-rich & BASF-LOA + L-03 (blue)
 - 2. DCPD-rich (yellow)

The shades represent sub-clusters

Clusters in males visible homogenously using all techniques

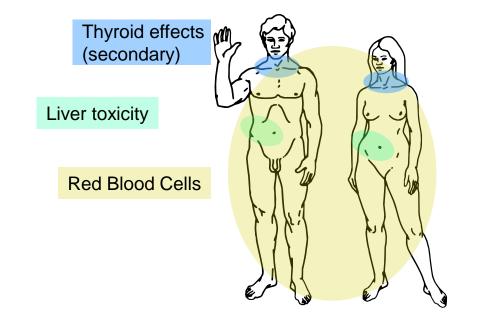
- PCA: samples grouped based on similarity of differences
- HCA: similar samples grouped into clusters
- TC: correlation of metabolome changes between compounds
- Clusters in females scatter more; Naphthalene-/ Indene-rich fall together with BASF LOA streams

Conclusion: Target Organs

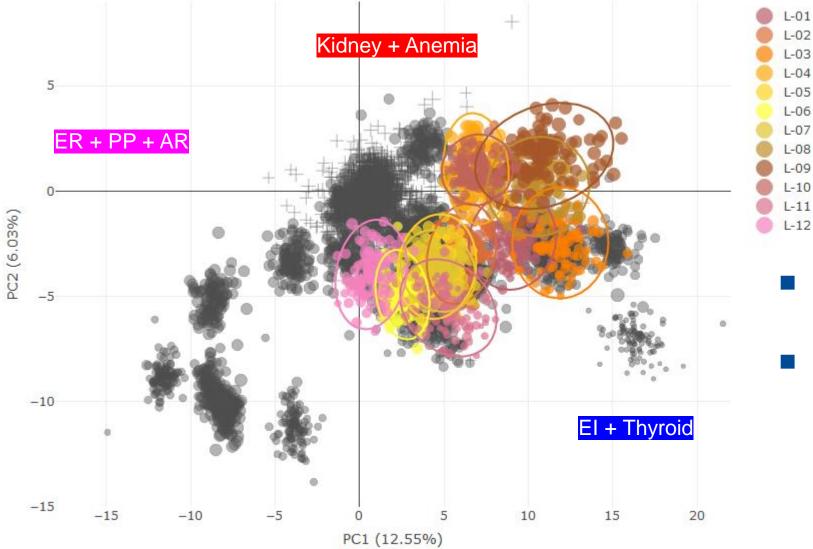
Liver

- Primary Target Organ: mostly enzyme induction, liver toxicity
- Organ weight increased, histopathology, liver cell dysfunction, ALT-increases, pattern matches

Thyroid:


- secondary to liver enzyme induction, no changes in thyroxine (T4)
- Organ weight increased, histopathology, pattern matches

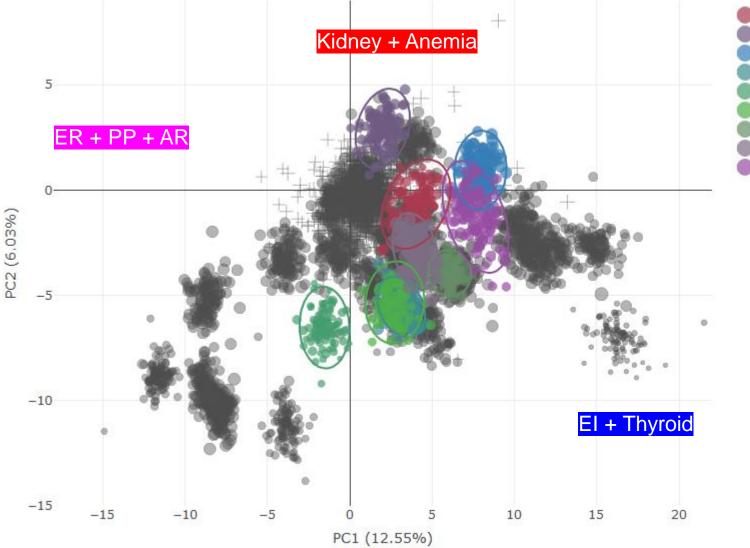
Kidney:


- alpha 2u globulin accumulation in male rats
- Organ weight increased, histopathology incl. immunohistochemistry, pattern matches
- Red blood cells:
 - Regenerative anaemia
- Other findings considered incidental or secondary

Conclusion: Grouping

- Toxicity data shows relatively homogenous effects: liver, thyroid, red blood cells, kidney (males)
 - Supported by metabolome patterns, PCA
 - Metabolome data suggest absence of certain toxicities (e.g., endocrine effects)
- Metabolome data show sub-clustering of LOA Cat L streams
 - Correlation analysis, bootstrapped PCA, hierarchical clustering
- Toxicity & metabolome effects partly driven by marker compounds (based on the 9 cmpds tested)
 the LOA stream toxicity & metabolome effects are not identical to an individual marker substance
 No effects observed for LOA streams that were not seen for marker compounds
- BASF LOA streams support the overall (sub-)category approach

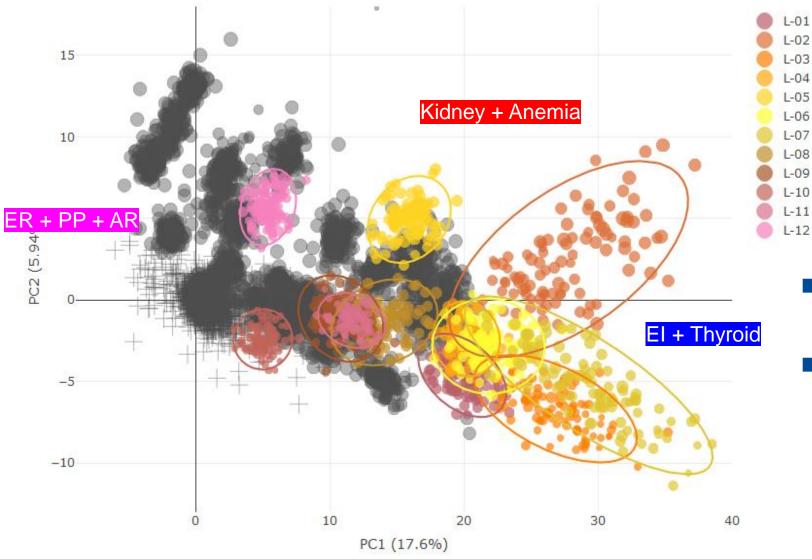
LOA Streams Overlaid



- Spanning the "universe" of toxicities
- Display of LOA streams

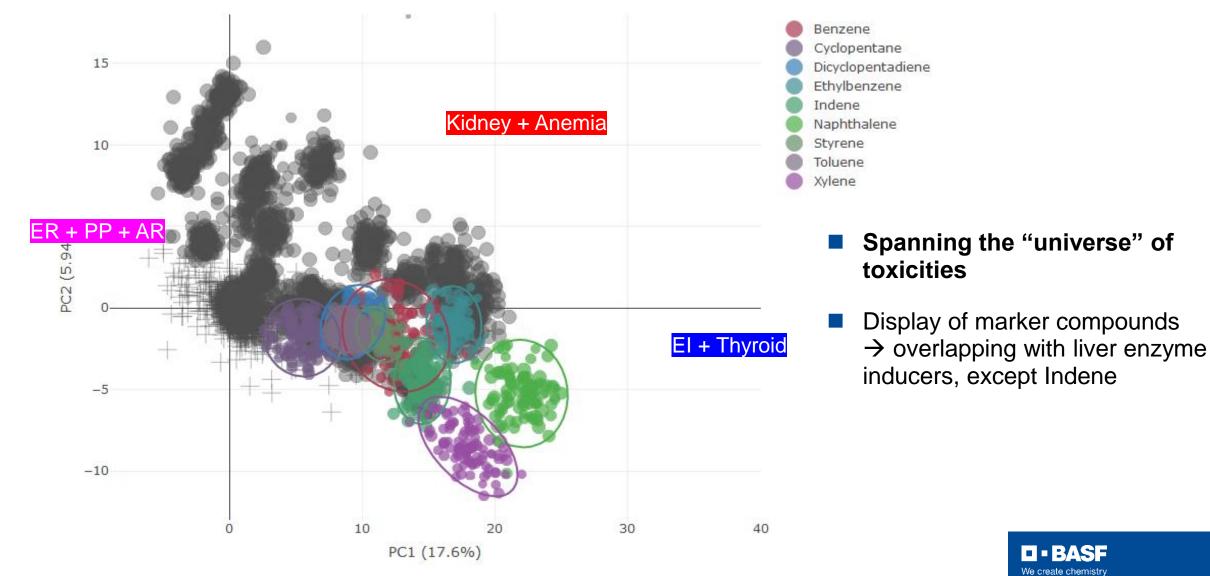
 overlapping with liver enzyme inducers

LOA Marker Substances Overlaid



- Spanning the "universe" of toxicities
- Display of marker compounds
 → overlapping with liver enzyme inducers, except Indene

LOA Streams Overlaid



- Spanning the "universe" of toxicities
- Display of LOA streams

 overlapping with liver enzyme inducers

LOA Marker Substances Overlaid

Webinar Programme

Introduction	Mike Penman (LOA)	13:00 (CET)
Read-Across in REACH; application to UVCBs	Dr. David Bell (ECHA, Helsinki)	13:10
Introduction to Metabolomics	Prof. Mark Viant (University of Birmingham, UK)	13:25
Use of Metabolomics for Read-Across	Prof. Bennard Van Ravenzwaay (BASF)	13:45
Break		14:05
Use of Metabolomics to Assess Biologic Category Justification A. Introduction	ical Coherence in UVCB Read-Across and	
A. Introduction	Mike Penman (LOA)	14:10
B. Experimental Design and Data Review	Prof. Hennicke Kamp (BASF)	1
C. Conclusion	Dr. Martijn Rooseboom (Shell/LOA)	
Discussion moderator	Prof. Mark Viant (University of Birmingham, UK)	15:15

D - BASF

LOA REACH CONSORTIUM

Utility of Metabolomics to Support Read-Across for UVCB substances under REACH Webinar 30th November 2021

Use of Metabolomics to Assess Biological Coherence in UVCB Read-Across and Category Justification C. Conclusions

Dr. Martijn Rooseboom (Shell / LOA)

14-day/metabolomics project (Resin Oils and Cyclic Dienes) Results Interpretation

- Study succeeded as a dose range finder for higher tier tests
- Metabolome profile recognition results
 - Of the 110 toxicity profiles in MetaMap[®] database only ~10% seen in pilot study
- Streams cluster into one area of toxicity and mainly on the liver, i.e. toxicity in the area we might expect for such substances
 - Pathology and clinical chemistry do not generally show unexpected findings
 - No metabolomics patterns seen by UVCB substances that have not also been seen with the tested marker substances
 - No mode of action that is alerting no endocrine

14-day/metabolomics project (Resin Oils and Cyclic Dienes) Results Interpretation - 2

- Closer analysis: Each UVCB substance is unique in its chemical composition and metabolomic profile
 - Form one group a number of sub-groups can be observed
 - Marker findings do not explain the full picture
- Streams for further testing should consider both analytical and metabolomics data
 - Very specific technique can highlight key pathways from metabolomics data universe
- Ongoing OECD 422 data on each stream will strengthen the overall analysis and data interpretation

14-day/metabolomics project (Resin Oils and Cyclic Dienes) Conclusion

• The current study has

- Demonstrated the utility of Metabolomics to inform on biological coherence for these streams
- Provided data to assist grouping and read across
- Assisting the design of further studies (OECD 422, OECD 408 and OECD 414) in the resin oils and cyclic dienes category
- Facilitated the reduction of animal use without compromising data confidence
- Metabolomics will be considered for other LOA non-CMR categories

71

Acknowledgments

- LOA Information Requirements Working Group
 - Martijn Rooseboom Shell (Chair)
 - Neslihan AYGUN Kocabas Total (Vice-chair)
 - Nicholas Synhaeve ExxonMobil
 - Frank Fullhammer BASF
 - Floriane AUGER [for Versalis]
 - Erik Rushton LyondellBasell
 - Pekka Kortesmaa Borealis
 - LOA Services Team
 - Mike Penman
 - Larry Higgins
 - An van Rompay
 - Viktorija Ostapenkaite

• BASF SE

- Hennicke Kamp
- Saskia Sperber
- Varun Giri
- Ben van Ravenzwaay
- BASF Metabolome Solutions GmbH
 - Oliver Schmitz
 - Regine Fuchs
 - Thomas Ehrhardt
 - Tilmann Walk
 - Volker Haake
 - Burkhard Flick
 - Silke Treumann
 - Volker Strauss
 - Dorothee Funk-Weyer

LOA REACH CONSORTIUM

Utility of Metabolomics to Support Read-Across for UVCB substances under REACH Webinar 30th November 2021

Discussion

Hosted by Professor Mark Viant (University of Birmingham, UK)

BACK-UP

LOA Metabolomics Webinar

November 30 2021

Pattern Ranking: Example LOA Stream L-01, HD

L-01, HD against pattern for "liver toxicity" >90%* of metabolite changes similar \rightarrow **MATCH**

						/	_							
					(MOA1	L-01 C011_Col	prt1) HD	Beta-ion	one (MOA4	4) HD 🗌	Caffeir	ne (MOA10)	HD 🗌	
¢-	Regulate	Anchor	Metabolite Name \$	Analyte ID ≑	f7 \$	f14≑	f28 \$	f7 \$	f14 \$	f28 \$	f7 \$	f14 \$	f28 \$	
~			Glycerol, lipid fraction	28000002	NA	2.85	2.85	1.66	1.56	1.6	1.6	1.68	1.38	L
/	•		Palmitic acid (C16:0)	28000003	NA	2.14	2.14	1.73	1.61	1.79	1.53	1.77	2.07	
∕	0		Linoleic acid (C18:cis[9,12]2)	28000004	NA	2.47		1.83	1.81	2	1.64	1.79	1.82	
✓	•		Stearic acid (C18:0)	28000007	NA	2.16	2 10	1.92	1.91	2.03	1.29	1.49	1.87	
~	•		Arachidonic acid (C20:cis[5,8,1	28000011	N/	2.06	200	2.08	1.94	2.29	1.48	1.73	2.35	
~	0		Docosahexaenoic acid (C22:cis[4	28000015	N/	1.6	1.1	2.68	2.33	2.45	2.44	2.93	2.44	Γ
~	0		Cholesterol, total	28000019	N.	1.83	1. 3	2.35	2.22	2.73	1.65	1.83	2.48	
✓	•		Glycerol phosphate, lipid fract	28000044	NA	4.91	4.11	2.47	2	2.69	1.42	1.89	2.07	Γ
~	•		Lignoceric acid (C24:0)	28000052	NA	1.6	1.0	2.77	2.92	3.1	1.68	2.19	2.21	Γ
~	•		Heptadecanoic acid (C17:0)	28000068	NA	1.83	1.83	1.96	1.45	2.05	1.27	1.74	1.6	Г
/	•		Tricosanoic acid (C23:0)	28000072	N A	1.49	1.4)	2.63	2.45	2.71	1.59	2.4	2.36	Γ
v	•		Phosphate, lipid fraction	28000086	N A	1.66	1.0	1.86	1.83	1.92	1.72	1.57	1.82	Г
~	•		Behenic acid (C22:0)	28000152	ΝA	1.53	1.5	2.65	2.71	3.02	1.75	2.15	2.37	T
~	•		4-Hydroxysphinganine (t18:0, Ph	28000158	ΝA	2.97	2.9	2.24	2.02	2.64	1.54	2.93	2.65	t
~	0		Nervonic acid (C24:cis[15]1)	28000159	ΝA	2.21	2.2	4.26	3.98	4.37	1.49	2.43	2.76	T
~	0		dihomo-gamma-Linolenic acid (C2	28000482	N A	2.16	2.1	2.49	2.5	2.39	1.48	2.48	2.13	
~	•		3-O-Methylsphingosine (d18:1) (Σ)	28000489	NA	5.1	5.1	4.47	4.52	4.42	2.28	3.18	3.17	ľ
~	0		threo-Sphingosine (d18:1) (Σ)	28000491	NA	3.05	3.05	3.31	3.42	3.76	1.87	2.53	2.36	F
~	0		Docosapentaenoic acid (C22:cis[28000493	NA	1.5	1.5	2.03	1.36	1.75	1.89	3.01	2.14	T
~	0		5-O-Methylsphingosine (d18:1) (Σ)	28000494	N.	4.2	4.	4.84	4.39	4.41	2.3	3.09	3	t
~	0		erythro-Sphingosine (d18:1) (Σ)	28000495	N/	3.31	3.11	3.77	3.66	3.51	2.12	2.7	2.56	F
~	õ		Cholesterol, total	28000504	N/4	1.82	1 52	2.74	2.54	3.02	1.8	2.62	3.32	F
/	0		Threonic acid	38000083	NA	1.28	1 28	1.48	1.35	2.04	1.37	1.72	1.57	
/	õ		Ceramide (d18:1,C24:1) (Σ)	68000025	NA	1.58	.58	2.73	2.59	2.62	1.49	1.97	1.97	h
/	0		TAG (C16:1,C16,1) and TAG (C14: (Σ)	68000028	NA	1.15	1.15	1.48	1.02	1.12	1.73	2.21	0.74	F
/	0		TAG (C18:2,C18:2)	68000029	NA	2.76	2.70	1.98	1.84	1.97	1.83	2.5	1.33	f
~	~		TAG (C16:0,C18:2)	68000030		3.07	3.07	2.44	1.93	2.37	1.65	2.64	0.63	

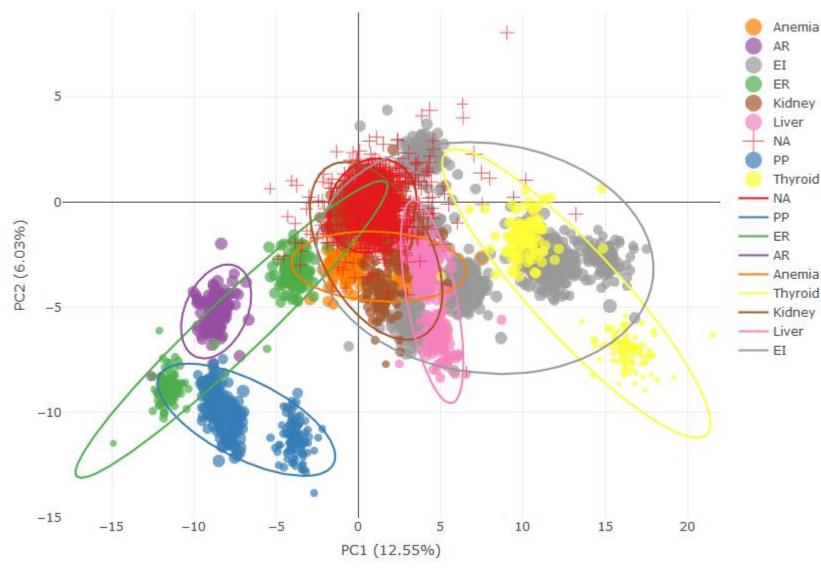
*75-90% of metabolite changes similar -> WEAK MATCH

L-01, HD against pattern for "anemia, iron deficiency" < 75% of metabolite changes similar \rightarrow EQUIVOCAL

		\wedge				- (6	nt	i an		f7 effic f7 a 1.18		
	(MOA1	L-01 C011_Col	ort1) HD	4-Chloro	aniline (MC HD	DA78) 🗌	Dimoxyst	robin (MO/	12) HIJ [C	le defic	ient diet (N	IOA3)
Analyte ID 🕏	f7 \$	f14 \$	f28 \$	f7 \$	f14 \$	f28 \$	f7 \$	f14 \$	f28 \$	f7 🗸	f14	f28 \$
18000032	NA	1.01	1.01	1.14	1.33	1.3	1.32	1.2	1.17	1.18	1.17	1 25
18000034	NA	1.06	1.00	1.74	1.64	1.87	1.54	1.25	1.19	1.35	1.21	1.34
18000217	NA	1.69	1.00	1.51	1.94	1.71	1.5	0.93	1.04	1.15	1.24	1.18
18000292	NA	0.92	0.92	6.37	4.24	9.49	12.2	1.96	1	14.98	5.77	5.88
38000006	NA	1.24	.24	1.88	2.09	1.98	1.5	1.18	1.17	1.33	1.26	1.41
38000008	NA	1.13	13	1.17	1.34	1.27	1.11	1.14	1.19	1.37	1.1	1.24
38000012	NA	0.77	6 77	1.38	1.52	1.39	1.56	1.62	1.33	1.45	1.32	1.3
38000052	NA	1.13	1 13	1.24	1.46	1.26	1.36	1.19	1.21	1.06	1.05	1.12
38000079	NA	1.2	12	1.2	1.36	1.43	1.2	1.4	1.29	1.16	1.19	1.16
38000443	N/	1.15	1.15	0.73	0.71	1.35	0.49	0.73	0.49	0.2	0.33	0.39
58000020	N#	1.26	1.20	1.12	1.39	0.78	0.55	0.64	0.37	0.42	0.17	0.13
58000023	N#	1.35	1.35	NA	1.58	NA	0.67	1.37	0.89	0.4	0.48	0.53
68000018	NA	1.85	1 85	1.61	1.85	1.87	1.28	1.18	1.08	1.22	1.14	1.24
68000026	NA	1.85	1 85	4.15	2.87	3.39	2.28	2.99	2.85	2.91	3.04	1.92
68000029	NA	2.76	2 70	7.94	4.21	8.29	3.69	3.82	5.11	1.52	3.4	1.63
68000032	NA	3.39	3.30	4.05	4.58	8.62	4.18	3.37	4.49	2.84	3.49	1.44
68000034	NA	0.74	1.74	1.07	1.19	1.1	1.29	1.19	1.14	1.38	1.24	1.5
68000043	NA	3.9	1.0	6.21	4.14	7.26	3.61	2.41	3.9	1.97	2.6	1.07
68000044	NA	3.2	3.2	6.36	4.97	8.42	3.51	3.6	5.25	1.91	3.02	1.74
68000045	NA	0.83	0.83	0.56	0.66	0.37	0.75	0.7	0.52	0.8	0.65	0.84
68000056	NA	1.39	1.30	6.13	5.48	9.18	2.5	3.54	4.13	2.09	3.35	1.75
68000057	NA	3.18	3.18	8.16	4.12	6.7	4.17	5.45	3.93	1.46	3.75	1.26

Pattern Ranking: Example LOA Stream L-01, HD

0


L-01, HD against pattern for "hormones, antiandrogen" < 50% of metabolite changes similar \rightarrow **MISMATCH**

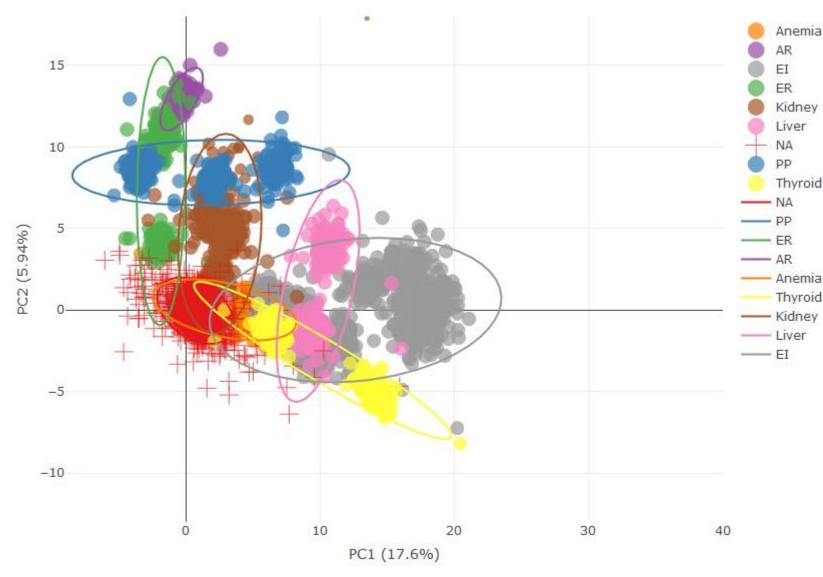
L-01, HD against pattern for "hormones, antiandrogen" Anchour metabolites dissi ∂_{ij} ar \rightarrow **MISMATCH**

lent:

					\square								-							
					(MOA19	L-01 0011_Cot	ort1) HD		teron Acet (MOA53) LI		Flutami	de (MOA23)нр 🗌	Vinclozo	olin (MOA2	2) HD m28 \$				
¢.	Regulate	Anchor	Metabolite Name \$	Analyte ID 🕏	m7 \$	m14\$	m28 \$	m7 \$	m14\$	m28 \$	m7 \$	m14 ≑	m28 \$	m7 \$	m14 \$	m28 \$				
✓	•	\$	Threonine	18000034	NA	0.97	0.97	1.27	1.56	1.67	1.33	1.24	1.22	1.16	1.08	1.16				
/	•		myo-Inositol, lipid fraction	28001194	NA	1.58	1.58	1.54	1.75	2.77	1.27	1.03	1.22	1.2	1.28	1.2				
/	•		Threonine	38000006	NA	1.11	1.11	1.25	1.53	1.89	1.35	1.3	1.13	1.21	1.17	1.02				
~	•		Glycerol, polar fraction	38000038	NA	1.04	1.04	0.71	0.79	1.11	0.72	0.72	0.89	0.8	0.9	0.79				
~	•		Glycerol-3-phosphate, polar fra	38000053	NA	1.09	1.00	1.31	1.28	1	0.75	1.08	1.17	1.74	1.18	1.22				
~	()		trans-4-Hydroxyproline	38000437	NA	0.8	0.8	0.69	0.72	0.64	0.79	0.89	0.75	0.81	0.78	0.86				
~	•		Glucuronic acid	38000551	NA	1.86	1.80	3.4	3.49	2.69	2.93	2.3	1.73	3.56	2.98	3.51				
~	•	\$	3-Methoxytyrosine	78000029	NA	1.23	7.23	1.32	1.34	1.27	1.0	1 43	1.59	1.29	1.13	1.15				
v	•	÷	Androstenedione	128000001	NA	0.9	0.9	4.31	3.12	1.26	30.68	55.72	23.97	3.33	4.15	2.27				
2	٩	÷	Testosterone	128000004	NA	0.73	0.73	4.01	2.47	0.97	14.84	19.61	10.58	2.03	2.83	1.30				
~	()	\$	Progesterone	128000008	NA	0.81	0.81	1.03	0.42	0.04	0.56	0.4	0.31	0.16	0.22	0.54				
~	•		21-Hydroxyprogesterone (11-Deox	128000010	NA	0.83	0.83	0.38	0.39	0.04	0.59	0.43	0.21	0.16	0.12	0.17				
✓	•		18-Hydroxy-11-deoxycorticostero	128000012	NA	0.84	0.84	0.04	0.01	0	0.85	0.68	0.07	0.08	0.17	0.23				
/	()		Corticosterone	128000016	NA	0.93	0.93	0.04	0.01	0	0.87	0.46	0.07	0.27	0.16	0.57				
	-					\backslash /														

MetaMap®Tox Reference Substances with Different MOAs (Males)

- Spanning the "universe" of toxicities
- Metabolome data of reference compounds with different MoAs from MetaMap®Tox data base:


Anemia

- Androgens (AR)
- Liver enzyme inducers (EI)
- Estrogens (ER)
- Kidney toxicants
- Liver toxicants
- Peroxisome proliferators (PP)

- Thyroid toxicants
- Bootstrapped data

MetaMap®Tox Reference Substances with Different MOAs (Females)

Spanning the "universe" of toxicities

Metabolome data of reference compounds with different MoAs from MetaMap®Tox data base:

Anemia

- Androgens (AR)
- Liver enzyme inducers (EI)
- Estrogens (ER)
- Kidney toxicants
- Liver toxicants
- Peroxisome proliferators (PP)

- Thyroid toxicants
- Bootstrapped data

